Genotype-response correlation in DRIVE PK, a phase 2 study of AG-348 in patients with pyruvate kinase deficiency

Charles Kung¹, Penelope A Kosinski¹, Heidi Mangus¹, Lei Hua¹, Gary Connor¹, Michelle Mobilia¹, Karen Sullivan¹, Marie-Hélène Jouvin¹, Rachael F Grace², Bertil Glader³, Chris Bowden¹

¹Agios Pharmaceuticals, Inc., Cambridge, MA, USA; ²Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; ³Stanford University School of Medicine, Palo Alto, CA, USA

INTRODUCTION

- Pyruvate kinase (PK) deficiency is a congenital hemolytic anemia caused by mutations in the PKLR gene, leading to a deficiency of the glycolytic enzyme red cell PK (PK-R) (Figure 1).1
- AG-348 is an orally available small-molecule allosteric activator of PK-R that activates the wild type (WT) and a range of mutant PK-R enzymes associated with PK deficiency (**Figure 2**).^{3,4}
- Increased PK-R activity and ATP levels in patient red blood cells treated with AG-348 ex vivo may be linked to PKLR genotype and/or PK-R protein level (Figure 3).4
- In a phase 2 clinical study of patients with PK deficiency (DRIVE PK; NCT02476916), 26 of 52 patients (50%) experienced a maximum Hb increase of >1.0 g/dL (mean maximum increase, 3.4 g/dL; range, 1.1-5.8 g/dL), including 25 of 42 patients (59.5%) with at least one missense mutation (Figure 4).5
- In most cases, Hb increases were rapid and sustained, and seen across a wide dose range from 5 to 300 mg twice daily (BID) (Figure 5).
- Hemolysis markers (reticulocytes, indirect bilirubin, haptoglobin) improved in patients who experienced a maximum Hb increase of >1.0 g/dL
- Hb increases were observed in patients with a variety of PKLR mutations, and increases were associated with the presence of at least one missense mutation.
- Because PK deficiency is a genetically heterogeneous disease, with over 200 described mutations, we sought to understand in greater detail the molecular parameters associated with Hb increases in patients treated with AG-348

Figure 1. Metabolic defects in PK deficiency

(A) The role of the PK-R enzyme in glycolysis. Defective glycolysis in PK-deficient red blood cells results in the accumulation of the upstream metabolites 2,3-DPG and PEP and the depletion of ATP and pyruvate, an accreased red blood cell lifespan. (B) Levels of 2,3-DPG and ATP in whole blood from healthy volunteers a patients with PK deficienc

Figure 2. AG-348 is an allosteric activator of PK-R^{3,4}

(A) Chemical structure of AG-348. (B) Recombinant WT PK-R enzyme activity was assessed after incubation with or without AG-348 (z µM) in the presence of increasing concentrations of PEP. (C) Crystal structure of AG-348 bound to PK-R tetramer.

gure 3. Ex vivo response may be linked to genotype and/or PK-R

(A) Genotype of patient samples. (B) PK-R activity and ATP levels in red blood cells from patients with PK deficiency; cells were incubated with AG-348 for 24 hr. (C) PK-R protein levels in red blood cells from healthy volunters; (indicated by WT) and patients with PK deficiency as measured by Meso Scale assay.

Genotype		
Patient	Mutations (nucleotide)	Mutations (protein)
A	1529 G>A/1532 G>A	R510Q/G511R
В	1456 C>T/1168 G>A	R486W/D390N
С	1529 G>A/721 G>T	R510Q/E241stop
D	1483 G>A/721 G>T	A495V/E241stop
E	1456 C>T/1022 G>A	R486W/G341D
F	1529 G>A/1241 C>G	R510Q/P414R
G	401T>A/1487 T>G	V134D/V496G

Figure 5. Hb change over time in DRIVE PK patients who had a

The majority of Hb increases were rapid and sustained. Median (range) days to the first Hb increase of >1.0 g/dL

64 85

Study day

113 141

169

maximum Hb increase of >1.0 g/d

e: 10 (7-187). The dose had to be held or reduced in nine p

22 43

육

OBJECTIVE

· To analyze the relationship between Hb increase and patient genotype, biochemical response to AG-348 treatment, and baseline PK-R protein level

METHODS

- · Whole blood samples were collected from patients with PK deficiency enrolled in the phase 2 DRIVE PK study.
- · Patient genotypes were determined by Centogene AG (http://www.centogene.com).
- Levels of PK-R protein were quantitated using a Meso Scale assay as described previously (antibodies from Abcam, Cambridge, UK [ab89071] and Aviva Systems Biology, London, UK [OAGA00912]).4
- The signal was normalized to a reference control sample from a subject without PK deficiency.
- For PK-R protein-level testing, the sample was obtained on Day 0 prior to the initiation of AG-348 treatment, except in a single patient for whom the sample from Day 15 was used.
- · Patient consent was received for all testing procedures.

RESULTS

в

wing to a rapid rise in Hb

<25 mg BIC

25 mg BID

---- 50 mg BID

- 100 mg BID

- 200 mg BID

– 300 mg BID

maximum Hb change was observed in DRIVE PK patients (A) Correlation plot between maximum Hb change observed in DRIVE PK patients and normalized PK-R protein level (r² = 0.39, p<0.0001). Dots represent individual patients. (B) PK-R protein levels in DRIVE PK patients</p> Δ

Presented at the 60th American Society of Hematology (ASH) Annual Meeting, December 1-4, 2018, San Diego, CA, USA

≤1.0 g/dL

ure 10. Patients with at least one R510Q or R479H missense nutation have lower PK-R protein levels than patients with

SUMMARY AND CONCLUSIONS

- A statistically significant correlation was observed between baseline PK-R protein level and Hb increases in patients with PK deficiency treated with AG-348.
- · This correlation is evidence that AG-348 is working via its proposed mechanism of action of stimulating the residual activity of the mutant enzyme.
- Although neither genotype nor PK-R protein level could predict Hb increases with absolute precision, some trends were observed:
- Patients with two non-missense mutations had lower protein levels than those with at least one missense mutation.
- Patients with R479H or R510Q mutations had lower protein levels than patients with other missense mutations
- These preliminary findings will be examined further in the ongoing phase 3 studies of AG-348 (NCT03548220 and NCT03559699).

Acknowledgments

We would like to thank the patients taking part in this study.

Disclosures

This study was funded by Agios Pharmaceuticals, Inc.

CK, PAK, HM, LH, GC, MM, KS, M-HJ, and CB: Agios - employment and stockholder. RFG: Agios - advisory board and research funding. BG: Agios - advisory board.

Editorial assistance was provided by Susanne Vidot, PhD, Excel Medical Affairs, Horsham, UK, and supported by Agios.

References

- 1. Grace RF et al. Am J Hematol 2015;90:825-30.
- 2. Grace RF et al. Blood 2018;131:2183-92.
- 3. Kung C et al. 55th ASH Annual Meeting 2013: Abstr 2180.
- 4. Kung C et al. Blood 2017;130:1347-56.
- 5. Grace RF et al. 59th ASH Annual Meeting 2017: Poster 2194
- 6. Kung C et al. 56th ASH Annual Meeting 2014: Abstr 4010

PDF file of the poster o visit http://bit.ly/2zQfEa