IDH1-R132H tumor cells are not robustly sensitive to PARP inhibition in a 2-HG-dependent manner

Elia Aguado-Fraile, Christine Hudson, Taryn Sleger, Sebastien Ronseaux, Rohini Narayanaswamy, Sung Choe, Bin Wu, Peter Kalev, Brandon Nicolay

Agios Pharmaceuticals, Inc., Cambridge, MA, USA

BACKGROUND

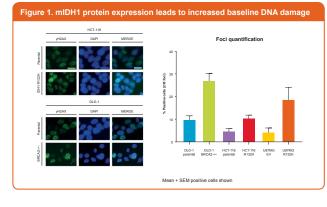
- Mutations in the metabolic enzymes isocitrate dehydrogenase (IDH) 1 or 2 arise in a variety of malignancies and lead to the production of the oncometabolite (D)-2-hydroxyglutarate (2-HG).1
- FDA approval of the mutant IDH (mIDH) 1 and 2 inhibitors ivosidenib (IVO; AG-120) and enasidenib (AG-221), for the treatment of adults with mIDH1 or mIDH2 relapsed or refractory acute myeloid leukemia (AML), underscores the clinical benefit of blocking the production of 2-HG.
- Parallel investigations have suggested that IDH1/2 mutation leads to a "BRCAness" phenotype and sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition via a reduced capability for DNA damage repair owing to high levels of 2-HG.3
- PARP inhibition has been proposed as an alternative strategy for the treatment of mIDH1/2 tumors, with the associated hypothesis that mIDH1/2 inhibition may lead to a loss of sensitivity to PARP inhibition.34

OBJECTIVES

- To investigate the relationship between 2-HG and DNA damage and repair in mIDH1 tumor cells.
- To assess the sensitivity of mIDH1 cells to PARP inhibition in vitro and in vivo
- · To investigate the potential for antagonism between IVO and PARP inhibitors in mIDH1 cells and mouse xenografts.

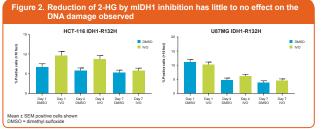
METHODS

- Mutant and corresponding parental control cell lines were purchased from Horizon Discovery
- HCT-116 human colon carcinoma cells heterozygous for a knock-in IDH1-R132H mutation
- DLD-1 human colorectal adenocarcinoma cells with BRCA2-/knock-out.
- THP-1 (acute monocytic leukemia) and U87MG (glioblastoma) cells were stably transduced using lentiviral constructs encoding for IDH1-R132H or an empty vector (EV) control.
- 2-HG levels were measured by liquid chromatography-mass spectrometry in all cell lines and are summarized in Table 1.
- · Levels of DNA damage were measured by immunofluorescence of vH2Ax foci
- γH2Ax immunofluorescence staining was performed using anti-phospho-histone H2A.X (Ser139) antibody, clone JBW301 (Millipore, Ref. 05-636), Cells were classified as positive for DNA damage when ≥ 10 foci per nucleus were counted.
- Foci quantification was performed using the FindFoci plugin for ImageJ.⁵ Total and phosphorylated ATM and H2Ax protein levels were estimated by western blot. Acute bleomycin treatment (10 µM for 1 hr) was used
- as a positive control for DNA damage signaling induction Baseline homologous recombination (HR) activity was estimated by GFP reporter assays (TopoGEN).


Table 1. 2-HG levels across cell lines

	2-HG level, mean (SD), ng/1 × 10 ^₅ cells
DLD-1 parental	169.25 (3.03)
DLD-1 BRCA2-/-	47.55 (2.75)
HCT-116 parental	5.38 (0.07)
HCT-116 IDH1-R132H	968 (98.36)
U87MG EV	48.9 (3.37)
U87MG IDH1-R132H	2090 (75.87)
THP-1 EV	6.8 (0.23)
THP-1 IDH1-R132H	400 (6.06)

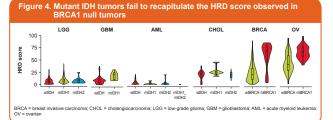
RESULTS


mIDH1 cells show increased baseline DNA damage

· Solid tumor mIDH1 cell lines showed an increased percentage of foci-positive cells compared with WT cells, reproducing previously published data (Figure 1).3

Treatment of mIDH1 cells with IVO fails to reduce DNA damage

- mIDH1 HCT-116 and U87MG cells were treated with 1 µM IVO for 1, 4. and 7 days, 2-HG levels were reduced by >90% after treatment for 24 hr.
- In contrast to previous publications,³ IVO treatment had little to no effect on DNA damage levels (Figure 2).


mIDH1 cells have reduced baseline HR activity

- As previously reported.⁶ total ATM levels were reduced in THP-1 cells expressing mIDH1. No effect on ATM was observed in HCT-116 and U87MG cells (Figure 3A).
- mIDH1 cells demonstrated decreased efficiency of HR repair compared with IDH WT cells (Figure 3B). HR activity was reduced by 90% in DLD-1 BRCA2-/- cells compared with the isogenic BRCA2+/+ parental cells (Figure 3B).

Exome sequencing of tumor samples does not reveal greater HR deficiency in mIDH1 tumors

- Analysis of exome sequencing data can identify genomic 'scars' indicative of HR deficiency (HRD). The TCGA PanCancer Atlas study reported an 'HRD score' based on the sum of."
- HRD loss of heterozygosity⁸
- Large-scale state transitions⁹
- NtAI (number of telomeric allelic imbalances).¹⁰ · HRD scores for IDH mutant tumor samples are not in the same range as those for BRCA1 null tumors (Figure 4).

mIDH1 cells show discordant sensitivity to PARP inhibitors in vitro

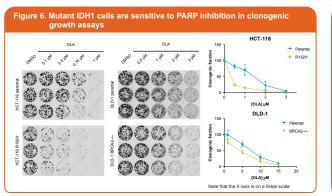
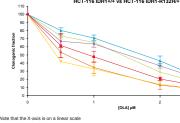

- Little to no sensitivity to talazoparib (TALA), olaparib (OLA), and niraparib (NIRA) was observed in mIDH1 cells based on 7-day CellTiter Glo (CTG) assay (OLA data shown in Figure 5). IC₅₀ values for all compounds and cell lines are summarized in Table 2.
- In contrast to CTG assays, mIDH1 cells showed enhanced sensitivity to PARP inhibition in clonogenic survival assays (Figure 6), as previously reported.3

Figure 5. Mutant IDH1 cells were insensitive to PARP inhibition as determined by cell viability following treatment for 7 days

U87MG HCT-116 THP-1 ----++++ Log [OLA] M Log [OLA] M Log (OLA) N DLD-1 ★ WT ★ BRCA2-Log [OLA] N

Cell line	TALA Gl₅₀, µM		outant cell lines treated OLA Gl₅, µM		NIRA GI₅, µM	
	Parental	IDH1-R132H	Parental	IDH1-R132H	Parental	IDH1-R132H
HCT-116	<0.001	<0.001	0.62	0.56	2.85	1.55
U87MG	>20	>20	>20	>20	>20	>20
THP-1	0.22	0.16	1.4	0.85	8.08	2.7
	Parental	BRCA2-/-	Parental	BRCA2-/-	Parental	BRCA2-/-
DLD-1	0.93	~0.01ª	8.07	0.85	>20	8.82

uous owing to the slope of the curve


Table 3. 50% Clonogenic survival values in IDH1 WT and mutant cell lines treated with PARP inhibitors

Cell line	TALA SF₅₀, μM		C SF,	0LA ₅₀, μΜ	NIRA SF₅₀, μM	
	Parental	IDH1-R132H	Parental	IDH1-R132H	Parental	IDH1-R1
HCT-116	0.0042	0.0017	0.68	0.17	1.2	0.33
	Parental	BRCA2-/-	Parental	BRCA2-/-	Parental	BRCA2-
DLD-1	0.0217	0.0091	2.4	0.48	6.92	3.39
SF ₁₀ = 50% survival	fraction (concentrat	ion that inhibits cell survi	val to 50%)			

IVO does not reverse sensitivity to PARP inhibition in HCT-116 IDH1-R132H cells

- 14-day clonogenic assays were performed in HCT-116 IDH1 WT and mutant cells combining increasing concentrations of PARP inhibitors with 0.1 or 1 µM IVO (Table 4).
- IVO treatment of mIDH1 cells did not reverse sensitivity to PARP inhibition in clonogenic growth assays (Figure 7), in contrast to previously published work.3

igure 7. mIDH1 inhibition does not reverse sensitivity to PARP inhibition in clonogenic growth assays HCT-116 IDH1+/+ vs HCT-116 IDH1-R132H/

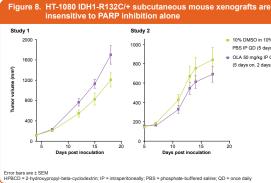


Table 4. 50% Clonogenic survival values in IDH1 WT and mutant cell lines treated with PARP inhibitors in combination with IVO

Cell line	TALA SF₅₀, nM	NIRA SF₅₀, μľ
HCT-116 WT + DMSO + 0.1 μΜ IVO + 1 μΜ IVO	4.20 3.65 3.84	0.83 0.65 0.72
HCT-116 R132H + DMSO + 0.1 μΜ IVO + 1 μΜ IVO	2.66 1.75 1.71	0.57 0.29 0.28

HT-1080 IDH1-R132C/+ subcutaneous mouse xenografts are insensitive to PARP inhibition alone

- Tumor growth inhibition upon treatment with a PARP inhibitor was not observed in two independent studies in HT-1080 IDH1-R132C/+ subcutaneous mouse xenografts (Figure 8).
- Study 1 was conducted as a prophylactic treatment model consistent with previous reports describing OLA sensitivity in HT-1080 mouse xenografts.
- Study 2 was conducted as an established tumor model assessment of OLA sensitivity in HT-1080 mouse xenografts.
- OLA plasma exposures were analyzed and found to be within the expected concentration range (Table 5).

Presented at the 2019 American Association for Cancer Research (AACR) Annual Meeting, March 29–April 3, 2019, Atlanta, GA, USA

OLA SF₅₀, μM

1.60

1.25

0.79

0.42

10% DMSO in 10% HPI

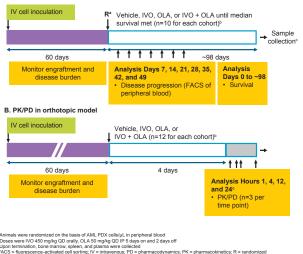
PBS IP QD (5 days on,

OLA 50 mg/kg IP QD

(5 days on, 2 days of

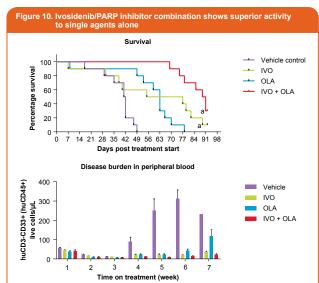
Table 5. Summary of plasma OLA exposure and tumor 2-HG production across

0 studies			
Analyte	Sample	Treatment	AUC _{0-24hr} , mean (SD)
2-HG	Tumor	Vehicle OLA	1.92 (0.11) × 10 ⁷ 1.87 (0.13) × 10 ⁷
OLA	Plasma	OLA	1.21 (0.29) × 10
2-HG	Tumor	Vehicle OLA	1.75 (0.03) × 10 ⁷ 1.41 (0.09) × 10 ⁷
OLA	Plasma	OLA	2.28 (0.26) × 10
	Analyte 2-HG OLA 2-HG	2-HG Tumor OLA Plasma 2-HG Tumor	AnalyteSampleTreatment2-HGTumorVehicle OLAOLAPlasmaOLA2-HGTumorVehicle OLA


AUC = area under the curve for plasma (hr•ng/mL) or tumor (hr•ng/

IVO/PARP inhibitor combination shows superior activity over single agents in an IDH1-R132H+ AML patient-derived xenograft (PDX)

- Reduction of 2-HG (>90%) by IVO led to survival benefit compared with vehicle (Figure 10).
- OLA treatment alone led to survival benefit compared with vehicle treatment alone.
- Combination of IVO and OLA provided added survival benefit compared with either treatment alone.
- Survival correlated with the onset of increased disease burden in peripheral blood (hCD45+ AML PDX cells).


igure 9. In vivo study designs for assessing efficacy and PK

A. Antitumor activity of IVO alone and in combination in orthotopic model

Table 6. Summary of PK/PD analysis in plasma, spleen, and bone marrow ing 4 days of treatmen

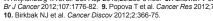
Dose	Ana-			Splee	n	Bone marrow	
group	lyte	mg/kg	AUC _{0-24h} , mean (SD)	AUC _{0-24hr} , mean (SD)	% 2-HG inhibition	AUC _{0-24hr} , mean (SD)	% 2-HG inhibition
IVO	2-HG	-	-	9.36 (0.39) × 10 ⁵	96	1.62 (0.32) × 10 ⁵	94
	IVO	450	7.67 (1.77) × 10⁴	8.84 (1.74) × 104	-	4.21 (0.85) × 10⁴	-
IVO +	2-HG	-	-	6.76 × 10⁵	97	2.73 (0.05) × 10 ⁵	90
OLA	IVO	450	2.00 (0.86) × 10 ⁵	3.36 × 10⁵	-	1.44 (0.22) × 10 ⁵	-
	OLA	50	8.8 (6.1) × 10 ³	2.19 × 10⁴	-	1.03 (0.10) × 104	-
OLA	2-HG	-	-	1.78 (0.18) × 107	23	2.48 (0.38) × 10 ⁶	8
	OLA	50	1.52 (0.51) × 104	3.89 (3.54) × 105	-	4.1 (0.90) × 10 ³	-
Vehicle	2-HG	-	-	2.32 (0.18) × 107	-	2.63 (0.75) × 10 ⁶	-

del genetics: IDH1-R132H; NPM1 W288fs*12; DNMT3A A571fs; FLT3-ITD-> + SFM tored by weekly survival bleed

Table 7. Median surviva

Treatment	Median survival (days post treatment start)
Vehicle	41.5
IVO	66
OLA	63
IVO + OLA	90
Survival comparison (Mantel-Cox	test) p-value
Vehicle vs IVO	0.035
Vehicle vs OLA	0.0002
Vehicle vs combination	<0.0001
IVO vs combination	0.0179
OLA vs combination	<0.0001
IVO vs OLA	Not significant

CONCLUSIONS


- In contrast to published reports, reduction of 2-HG by IVO has little to no effect on baseline DNA damage.
- mIDH1 cells show reduced HR activity in vitro compared with IDH1 WT cells. However, these findings were not comparable to a BRCA-deficient phenotype.
- Exome sequencing analysis did not identify the presence of HRD marks in mIDH1 tumors across different indications
- In vivo experiments in HT-1080 xenografts demonstrated no sensitivity to single-agent PARP inhibitor treatment, in contrast to previously published data.
- Combined treatment of an mIDH1 AML PDX with IVO and a PARP inhibitor led to a significant survival benefit compared with either treatment alone.

Disclosures

This study was funded by Agios Pharmaceuticals, Inc. EA-F, CH, TS, SR, RN, SC, BW, PK, and BN; Agios - employment and stockholder

Editorial assistance was provided by Helen Varley, PhD, CMPP, Excel Medical Affairs, Horsham, UK, and supported by Agios.

1. Dang L et al. Nature 2009;462:739-44. 2. Ward PS et al. Cancer Cell 2010:17:225-34. 3. Sulkowski P et al. Sci Transl Med 2017:9(375):pii:eaal2463. 4. Molenaar RJ et al. Clin Cancer Res 2018;24:1705-15. 5. Herbert AD et al. PLoS One 2014;9:e114749. 6. Inoue S et al. Cancer Cell 2016:30:337-48. 7. Knijnenburg TA et al. *Cell Rep* 2018;23:239-54.e6. 8. Abkevich V et al. Br J Cancer 2012;107:1776-82. 9. Popova T et al. *Cancer Res* 2012;72:5454-62.

Scan code to receive PDF file of the poster or visit http://bit.ly/2GFB9iU