Preclinical pharmacokinetics and pharmacodynamics of AG-519, an allosteric pyruvate kinase activator

Yue Chen, Raj Nagaraja, Kha Le, Penelope A Kosinski, Gavin Histen, Charles Kung, Hyeryun Kim, Chandra Prakash, Lenny Dang, Janeta Popovici-Muller, Jeffrey Hixon, Lee Silverman, Scott Biller, Hua Yang

Agios Pharmaceuticals Inc., Cambridge, MA, USA

Presented at the 21st Congress of the European Hematology Association, 12 June 2016, Copenhagen, Denmark
Disclosures

- This work was supported by Agios Pharmaceuticals, Inc.
- All authors are Agios employees and stockholders
- Editorial assistance was provided by Helen Varley, PhD, CMPP, of Excel Scientific Solutions, Horsham, UK, and supported by Agios
Background: Pyruvate kinase (PK) deficiency

Description
- A rare genetic disease causing chronic hemolytic anemia
- Symptoms vary in severity
- Current treatments are supportive only

Etiology
- Caused by mutations in the red blood cell isoform of PK (PK-R), a key enzyme in red blood cell glycolysis

Biology
- Leads to increases in the upstream metabolite 2,3-DPG and decreases in the product ATP in blood

Therapeutic concepts
- Activation of mt PK-R could repair the metabolic defect
- Increase hemoglobin levels and decrease hemolysis, leading to patient benefit

Glucose → **2,3-DPG** → ATP

Glucose → **2,3-DPG** → ATP

Glycolysis in healthy red blood cell

Defective glycolysis in mt PK-R red blood cell

2,3-DPG = 2,3-diphosphoglycerate; ATP = adenosine triphosphate; mt PK-R = mutant PK-R
PK-R activators for the treatment of PK deficiency

- Activation of PK-R resulting in increases in ATP and decreases in 2,3-DPG in healthy volunteers has been observed with an earlier molecule (AG-348)

- Early AG-348 clinical data demonstrate proof-of-concept with rapid and sustained Hb increases in patients with PK deficiency\(^1\)

- AG-519 is a potent, highly selective, orally bioavailable second PK-R activator developed with the aim of eliminating off-target aromatase inhibitory effects of AG-348

\(^1\) Presentation S466. Hb = hemoglobin
Objectives

- To explore the pharmacokinetic/pharmacodynamic (PK/PD) relationships of AG-519 with PK-R activity, ATP and 2,3-DPG in wild type PK-R mice

- To use data from animal studies to project the pharmacokinetic profile and efficacious dose of AG-519 in humans
Human efficacious dose and dosing regimen projection

- Human pharmacokinetics projection
 - Pharmacokinetic studies in different species
 - *In vitro* metabolism
 - Plasma protein binding and *in vitro* CL_{int}

- Human efficacious exposure estimation
 - Cell biology and biochemistry studies
 - PK/PD studies

Modeling simulation for human projection

$CL_{\text{int}} = \text{intrinsic clearance}$
Human efficacious dose and dosing regimen projection

- Human pharmacokinetics projection
 - Pharmacokinetic studies in different species
 - In vitro metabolism
 - Plasma protein binding and \(\text{in vitro} \ CL_{\text{int}} \)

- Human efficacious exposure estimation
 - Cell biology and biochemistry studies
 - PK/PD studies

Modeling simulation for human projection

\(CL_{\text{int}} = \text{intrinsic clearance} \)
Comparable AG-519 pharmacokinetics across species

- Moderate clearance (1.13–2.51 L/hr/kg), moderate to high volume of distribution (2.08–6.44 L/kg) and similar plasma protein binding (79.3% - 87.3%) in mouse, rat, dog and monkey
- Rapid absorption ($T_{\text{max}} \leq 1.2 \text{ h}$) and moderate oral bioavailability (6.9–19.5%)
- Good *in vitro* to *in vivo* correlation in the CL estimates across species

CL = clearance; T_{max} = time to maximum plasma concentration
Human pharmacokinetic projections

- Pharmacokinetic parameters in mouse, rat, dog and monkey used for human pharmacokinetic projection
- *In vitro* metabolism data used as a correction factor
- Allometric scaling conducted for human pharmacokinetic projection

Projected human pharmacokinetic parameters:
- CL: 0.4 L/hr/kg
- V_{SS}: 3.0 L/kg
- Effective $t_{1/2}$: 4 – 7 hr
- Bioavailability: 22%

Eh = hepatic extraction ratio; CL = clearance; V_{SS} = volume of distribution at steady state; $t_{1/2}$ = half-life
Human efficacious dose and dosing regimen projection

- **Human pharmacokinetics projection**
 - Pharmacokinetic studies in different species
 - *In vitro* metabolism
 - Plasma protein binding and *in vitro* CL_{int}

- **Human efficacious exposure estimation**
 - Cell biology and biochemistry studies
 - PK/PD studies

Modeling simulation for human projection

$CL_{int} =$ intrinsic clearance
Mouse PK/PD study design

Female C57/BL6 mice
PK-R WT

Oral AG-519

Dosing
Vehicle* 1 mg/kg 10 mg/kg 50 mg/kg 150 mg/kg

Single dose 5 doses (BID) 13 doses (BID)

Sampling

Serial sample collections for PK/PD evaluation up to 72 hr after last dose

Read out
Plasma AG-519 Whole blood ATP Whole blood 2,3-DPG Whole blood PK-R activity

PK/PD steady state achieved after 5 BID doses

*0.5% methyl cellulose in water

n=4 mice per time point in each dose group
Using mouse PK/PD to estimate human efficacious exposure

- Drug exposure-dependent response observed for all three markers
- The exposure-response relationship is described by an E_{max} model
- $EAUC_{90}$ (421 hr•ng/mL) for ATP increase used for human efficacious dose prediction

<table>
<thead>
<tr>
<th>Parameter (13 BID doses)</th>
<th>PK-R activity</th>
<th>2,3-DPG</th>
<th>ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG-519 free AC_{50} (nM)</td>
<td>0.55</td>
<td>0.32</td>
<td>0.72</td>
</tr>
<tr>
<td>AG-519 $EAUC_{90}$ (hr•ng/mL)</td>
<td>320</td>
<td>187</td>
<td>421</td>
</tr>
</tbody>
</table>

AC_{50} = half-maximal activity concentration; $EAUC_{90}$ = area under the curve at 90% maximum effect
AG-519 human dose projection

- Favorable pharmacokinetics in multiple species
- Clear PK/PD relationship established in the mouse model enabled the prediction of the AG-519 efficacious dose in humans
- Projected human efficacious dose and dosing schedule:
 - 62–134 mg, orally twice daily
- These data supported the decision to bring AG-519 into a phase 1 healthy volunteer study
AG-519 has favorable clinical pharmacokinetics: Poster 752

- Rapid absorption, moderate variability
- Exposure is dose-proportional or slightly greater than dose-proportional
- Effective t½ of approximately 6 hr

Effective t₁/₂: elimination t₁/₂ in the therapeutic relevant concentration range, in this case t₁/₂a
Comparison: projected vs actual human pharmacokinetics

- Human pharmacokinetic profile was simulated using animal data, the projected human pharmacokinetic parameters, and a 2-compartment model.
- Animal AG-519 pharmacokinetic data translate well to healthy volunteers.
- The actual human pharmacokinetic profile is similar to the simulated:
 - Slightly higher than projected C_{max}; good C_{trough} projection.
 - As projected, pharmacokinetic profile supported oral BID dosing regimen.

<table>
<thead>
<tr>
<th></th>
<th>Projected</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL/F, L/hr/kg</td>
<td>1.8</td>
<td>0.66–1.0</td>
</tr>
<tr>
<td>Effective $t_{1/2}$, hr</td>
<td>4–7</td>
<td>6</td>
</tr>
</tbody>
</table>

BID = twice-daily; CL/F = oral clearance; C_{max} = maximum plasma concentration; C_{trough} = lowest plasma concentration.
Dose-dependent changes in ATP and 2,3-DPG blood levels are consistent with PK-R activation: Poster 752

Mean (+ SD) change in blood concentration-time profiles of ATP following multiple oral doses of AG-519 (cohorts 1 and 2 only)

- Placebo
- 125 mg AG-519 q12h
- 375 mg AG-519 q12h

- 62% increase from baseline

Dosing period
Conclusions

- AG-519 shows favorable pharmacokinetic profiles in multiple species
- Preclinical PK/PD relationship and favorable pharmacokinetics enabled prediction of human efficacious dose and dosing regimen
 - AG-519 has favorable pharmacokinetic profile in humans
 - Dose-dependent PD response consistent with PK-R activation
 - AG-519 has a favorable safety profile to date, and it does not demonstrate the inhibition of aromatase previously observed with AG-348
- The PK/PD data from healthy subjects will inform dose selection for future studies of AG-519 in patients with PK deficiency

Please see Posters 752 and 742. PD = pharmacodynamic
Acknowledgements

- Agios PK-R discovery team
- Agios PK-R development team
- The volunteers taking part in the AG-519 phase 1 study