Structure-Based Design of AG-946, a Pyruvate Kinase Activator

Tao Liu, ${ }^{[\text {[a] }}$ Anil K. Padyana, ${ }^{[b]}$ Evan T. Judd, ${ }^{[c]}$ Lei Jin, ${ }^{[d]}$ Dalia Hammoudeh, ${ }^{[\text {[e] }]}$ Charles Kung, ${ }^{[f]}$ and Lenny Dang*[g]

Abstract

Pyruvate kinase (PK) is the enzyme that catalyzes the conversion of phosphoenolpyruvate and adenosine diphosphate to pyruvate and adenosine triphosphate in glycolysis and plays a crucial role in regulating cell metabolism. We describe the structure-based design of AG-946, an activator of PK isoforms, including red blood cell-specific forms of PK (PKR). This was designed to have a pseudo-C2-symmetry matching its allosteric binding site on the PK enzyme, which increased its potency toward PKR while reducing activity against off-targets observed from the original scaffold. AG-946 (1) demonstrated activation of human wild-type PK (half-maximal activation concentration

Introduction

Mature red blood cells (RBCs) rely primarily on glycolysis for energy production. ${ }^{[1]}$ As shown in Figure 1, the RBC-specific form of pyruvate kinase (PKR) catalyzes the final step of glycolysis in RBCs, converting phosphoenolpyruvate (PEP) to pyruvate, with concomitant formation of the energy carrier molecule adenosine triphosphate (ATP).
[a] Dr. T. Liu
Ensem Therapeutics
880 Winter St, Waltham, MA 02451, USA
[b] Dr. A. K. Padyana
Atavistik Bio.
75 Sidney St, Cambridge, MA 02139, USA
[c] Dr. E. T. Judd
Novartis Institute for Biomedical Research
250 Massachusetts Ave, Cambridge, MA 02139, USA
[d] Dr. L. Jin
Agios Pharmaceuticals, Inc.
88 Sidney St, Cambridge, MA, USA
[e] Dr. D. Hammoudeh
Agios Pharmaceuticals Inc., 88 Sidney St, Cambridge, MA, USA
[f] Dr. C. Kung
Remix Therapeutics
100 Forge Rd, Watertown, MA 02472, USA
[g] L. Dang
Verolix, Inc.
800 Boylston St. Unit 900147, Boston, MA, 02199, USA
E-mail: lenny.dang@gmail.com
岛 Supporting information for this article is available online at https://doi.org/ 10.1002/cmdc. 202300559

กf © 2023 Agios Pharmaceuticals. ChemMedChem published by Chemistry Europe and Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract

$\left[\mathrm{AC}_{50}\right]=0.005 \mu \mathrm{M}$) and a panel of mutated PK proteins (K410E $\left[\mathrm{AC}_{50}=0.0043 \mu \mathrm{M}\right]$ and R510Q $\left.\left[\mathrm{AC}_{50}=0.0069 \mu \mathrm{M}\right]\right)$, (2) displayed a significantly longer half-time of activation (>150-fold) compared with 6-(3-methoxybenzyl)-4-methyl-2-(meth-ylsulfinyl)-4,6-dihydro-5H-thieno[2',3':4,5]pyrrolo[2,3- d]pyridazin-5-one, and (3) stabilized PKR R510Q, an unstable mutant PKR enzyme, and preserved its catalytic activity under increasingly denaturing conditions. As a potent, oral, smallmolecule allosteric activator of wild-type and mutant PKR, AG946 was advanced to human clinical trials.

Figure 1. Role of PK in glycolysis. ${ }^{[1]} \mathrm{ADP}=$ adenosine diphosphate; ATP = adenosine triphosphate; DPG = diphosphoglycerate; FBP = fructose 1,6-bisphosphate; $\mathrm{PEP}=$ phosphoenolpyruvate; $\mathrm{PG}=$ phosphoglycerate; $\mathrm{PK}=$ pyruvate kinase. Note: Not all steps of glycolysis are shown.

Decreased pyruvate kinase (PK) function leads to dysfunctional RBCs with defective glycolysis, including increased levels of 2,3-diphosphoglycerate (2,3-DPG) and PEP and decreased levels of ATP. ${ }^{[2]}$ Thus, because PK increases the amount of ATP produced, this is a key enzyme for maintaining energy homeostasis in erythrocyte precursors and RBCs.

The activity of wild-type (WT) PK can play a role in hemolytic anemias where PK function may become critical because of increased energy demands, increased cellular oxidative stress, or the abnormal accumulation of upstream glycolytic metabolites (i.e., 2,3-DPG). For instance, a study on RBCs from patients with sickle cell disease (SCD) demonstrated reduced PK activity and stability compared with RBCs from healthy subjects. ${ }^{[3]}$

Myelodysplastic syndromes (MDS) are a heterogeneous group of bone marrow disorders characterized by dysfunctional hematopoiesis, progressive cytopenia, and abnormal cellular maturation. ${ }^{[4]}$ Samples from patients with MDS, but not from patients with other myeloid malignancies, have shown acquired deficiency of PK activity. ${ }^{[5]}$ More recently, studies using RBCs from patients with lower-risk MDS found decreased glycolytic activity in these patients, including reduced PK activity and ATP levels compared with healthy counterparts. ${ }^{[6]}$ Moreover, PK activation by mitapivat has demonstrated clinical improvement in anemia in patients with thalassemia, a disease of ineffective erythropoiesis with features that share similarities with MDS-
associated anemia. ${ }^{[7]}$ Therefore, enhancement of glycolysis through PK activation may improve the survival and differentiation of erythroid precursors in the bone marrow and may also improve RBC functionality in peripheral circulation, and thus has the potential to treat MDS-associated anemia.

In addition to its central role in producing ATP, PK is also a key regulator of 2,3-DPG levels in RBCs; when bound to hemoglobin, 2,3-DPG decreases its affinity for oxygen, manifested as a rightshift in the hemoglobin-oxygen dissociation curve. ${ }^{[8]}$ While this normal physiologic effect of 2,3-DPG facilitates oxygen delivery to tissues, it can be deleterious in patients with SCD as the deoxygenated form of sickle hemoglobin (HbS) has a much higher propensity to sickle. ${ }^{[8-9]}$ Therefore, by regulating 2,3-DPG and ATP levels, PK activation can potentially reduce $R B C$ sickling in patients with SCD. PK activation has been shown to decrease RBC 2,3-DPG levels and increase ATP levels in both preclinical models and humans. ${ }^{[66,10]}$ The inheritance of a single mutant allele of the PKLR gene (i.e., the gene that codes for PK) can result in more severe forms of hemolytic anemia. Carriers of a single allele of HbS are usually asymptomatic, but a patient bearing a single HbS allele as well as a mutant PKLR allele can suffer from a severe phenotype of SCD. ${ }^{[11]}$

Herein, we report the structure-based design and optimization of the clinical candidate compound 27 (AG-946), from a chemical starting point that was originally identified by the National Institutes of Health chemical genomics center. ${ }^{[12]}$

Results and Discussion

Binding Mode of the Tricyclic Core in Human PKR Enzyme

Two of the reported thieno[$\left.2^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo[$\left.2,3-\mathrm{d}\right]$ pyridazin-5one compounds, 1 and 2 (Figure 2A), were synthesized and tested in multiple different in vitro biochemical and biophysical activity assays and in co-crystallization experiments. ${ }^{[12]}$ Compounds 1 and 2 showed potency in activating the recombi-
nantly expressed human WT PKR enzyme (half-maximal activation concentration $\left[\mathrm{AC}_{50}\right]=0.038 \mu \mathrm{M}$ and $0.032 \mu \mathrm{M}$, respectively). The co-crystal structure of compound 2 with the WT human PKR protein at 2.35 Å resolution (Figure 2B) shows compound 2 binding in an allosteric pocket at the dimer interface, distinct from the fructose 1,6-bisphosphate (FBP) binding site. Compound 2 binding is mediated by $\pi-\pi$ sandwich interactions of the thienopyrrolopyridazinone tricyclic core with two F69 residues from two adjacent monomers. The 3-methoxyphenyl ring is in an almost perpendicular conformation to the tricyclic ring system, forming a π-edge interaction to residue F69 and forming van der Waals interaction with L437. Based on the observed interactions, we hypothesized that the highly constrained tricyclic ring system is critical for the activity of compound 2 . We first explored the structure activity relationship (SAR) in this core region with the aim of developing a potent PK activator.

Pyridazinone Ring Modification

Substituting the pyridazinone of compound 1 with other sixmembered aromatic ring systems, such as phenyl (compound 3) or pyrimidinone (compound 4) rings (Figure 3A), resulted in a loss of PKR activation (Table 1), indicating that not any tricyclic core structure can form $\pi-\pi$ interactions with the two F 69 residues.

Replacing the pyridazinone with the five-membered dihy-dro-pyrrol-2-one (compound 5) restored potency compared with compounds 3 and 4 but was 100 -fold less potent than compound 1. From the crystal structure of Figure 2B, residue Q436 of one monomer is adjacent to position N12 of the pyridazinone ring. The distance between N 12 and the protein surface is $\sim 3.4 \AA$, insufficient for the CH group of compounds 3 and 4. Interestingly, the CH group was tolerated at position 13 of the pyridazinone owing to a small pocket between the two Q436 residues. The smaller dihydro-pyrrol-2-one is unlikely to result in steric clashes with the binding site; however, the partially saturated five-membered ring is less ideal for forming

B

1

2

Figure 2. Literature compounds 1 and 2 (A) and co-crystal structure of compound 2 (green) with human PKR, showing the allosteric binding site at the dimeric interface (B). Two conformations of compound 2 flipped head-to-toe were modeled in the binding site. For clarity, only one of the conformations is presented. PKR = red blood cell-specific form of pyruvate kinase.
A

B

8

9

10

Figure 3. Compounds 3-5 explore various substitutions of the center ring system (A) and analogs 6-10 examine alternatives to the thiophene ring of compound 1 (B).

Table 1. Human PKR activity of compounds 1 and 3-5.	
Compound ID	$\operatorname{PKR~AC}_{50}(\mu \mathrm{M})$
1	0.038
3	>100
4	38
5	3.78
$\mathrm{AC}_{50}=$ half-maximal activation concentration; ID $=$ identification; $\mathrm{PKR}=$ red	
blood cell-specific form of pyruvate kinase.	

the $\pi-\pi$ interactions with the F69 residues from two different monomers. Based on initial SAR, we maintained the pyridazinone ring in subsequent analogs.

Design and Synthesis of Thiazolopyrrolopyridazinone Core

Compound 1 contains a thiophene ring, which is known for its cytochrome P450-catalyzed reactive metabolism derived from thiophene ring oxidation. ${ }^{[13]}$ Thus, we focused on replacing the thiophene ring to increase metabolic stability and synthesized compounds 6-10 (Figure 3B).

Of the new analogs, pyrazole (compounds 6 and 7), oxazole (compound 8), and the phenyl analog (compound 9) had negative impacts on the SAR, while the thiazole analog (compound 10) was almost equipotent to compound 1 (Table 2). The trisubstituted thiazole ring is more electrondeficient than the thiophene ring because incorporation of electronegative nitrogen atoms in an aromatic heterocycle typically decreases its overall electron density, as well as the energy of the highest occupied molecular orbital, making the heterocycle less prone to P 450 -mediated oxidative metabolism. ${ }^{[14]}$ Therefore, the thiazo-lopyrrolo-pyridazinone was chosen as the pharmacophore for further optimization.

Table 2. Human PKR activity of compounds $\mathbf{1}$ and 6-10.		
Compound ID	PKR AC 50	Cell-based $^{(\mu \mathrm{M})}$

$\mathrm{AC}_{50}=$ half-maximal activation concentration; $\mathrm{ATP}=$ adenosine triphosphate; $I D=$ identification; $N D=$ not determined; PKR $=$ red blood cellspecific form of pyruvate kinase.

Developing Pseudo-C2-Symmetric Analogs for the Two-Fold Symmetric Binding Pocket

The pocket where compound 2 binds is two-fold symmetric due to its location at a homodimerization interface (Figure 2 B). The crystal structure of PKR with compound 2 shows two alternative binding modes for compound 2, likely due to partial occupancy along the pseudo-two-fold symmetry with methoxyphenyl occupying the pockets in both ends (Supplementary Figure 1). In the binding pose modeled (Figure 2B), the top right corner of the pocket is occupied by the 3methoxyphenyl group, while the bottom left-hand corner (Figure 2B, dashed circle) is left unoccupied. This led us to further optimize the tricyclic compound and synthesize a C2symmetric molecule to maximize the interaction to the C2symmetric binding pocket.

In vitro profiling of compound 2 showed phosphodiesterase (PDE) 3 inhibition at low $\mu \mathrm{M}$ ranges (half-maximal inhibitory concentration $\left[\mathrm{IC}_{50}\right] 1.25 \mu \mathrm{M}$ and $1.32 \mu \mathrm{M}$ against PDE 3A and PDE 3B, respectively). To understand this off-target activity, we analyzed the published crystal structure of PDE inhibitor MERCK1 $\left(\mathrm{IC}_{50} 0.27 \mathrm{nM}\right)^{[15]}$ in complex with PDE 3B (Supplementary Figure 2). This showed that MERCK1 binds in a long and flat pocket of PDE 3B. The left-hand side of the pocket is closed, while the right-hand side is opened to the solvent front. In the right-hand side pocket, there is a key $\pi-\pi$ interaction between the phenyl ring of MERCK1 with the F991 residue of PDE 3B. It may be possible that compound 2 binds to this PDE 3B-binding pocket. On the other hand, a C2-symmetric molecule would no longer fit this PDE-binding pocket. Therefore, we rationalized that designing C2-symmetric molecules could optimize interactions with the PKR binding pocket and reduce the potential for off-target PDE 3 liability.

SAR to Explore the Right-hand Side of the Pseudo-C2Symmetric Molecule

After the tricyclic core was settled as a thiazolopyrrolopyridazinone, we decided to optimize the functional groups on both sides of the core to make a pseudo-C2-symmetric molecule.

First, the right-hand side was refined to maximize the interaction between the right-hand-side ring with nearby amino acids, especially the D397 residue (Table 3 and Figure 4). To explore single point changes, the left-hand side was kept as the methylthiazole group. Compounds 11-17 were synthesized. Removing the methyl from the methyl ether of compound 10 increased the potency about five-fold (compound 11). Interestingly, compound 12, with the phenol group at the 4 position, was equipotent to compound 11 ; however, the 2 -position isomer, compound 13 , was significantly less potent. We

Table 3. Compounds for the right-hand-side SAR exploration.
R

PKR	Cell-based	Cell-based PKR
AC $_{50}$	ATP $^{(\mu \mathrm{M})}$	activity AC_{50}
$(\mu \mathrm{M})$	$\mathrm{AC}_{50}(\mu \mathrm{M})$	$(\mu \mathrm{M})$

10

$0.093 \quad 0.476$
ND

11

$0.017 \quad 0.093$
0.19

12

0.018

ND
ND

13

0.373
2.573

ND

14

3.298
8.049

ND

15

0.044
0.208
1.307

16

0.012
0.061

17

1.642
3.368
$\mathrm{AC}_{50}=$ half-maximal activation concentration; ATP $=$ adenosine triphosphate; $I D=$ identification; $N D=$ not determined; $P K R=$ red blood cellspecific form of pyruvate kinase; SAR = structure activity relationship.

Figure 4. Co-crystal structure of compound 12 (green) bound to PKR. Cmpd = compound; PKR = red blood cell-specific form of pyruvate kinase; Wat $=$ water .
determined the co-structure of compound 12 with the human PKR to understand the SAR and guide further optimization (Figure 4). The crystal structure showed a hydrogen bond donor/acceptor interaction hosted by the 4-phenol OH group and mediated through water with the main-chain carbonyl group of D397 and the side chain of N361. Interestingly, when we extended the hydroxy group to one more carbon at the 4 position (compound 14), potency was significantly reduced.

Compound 15 has a 1-carbon extension at the 3 position of the phenyl ring, causing a two-fold loss of activity compared with compound 11 (Table 3). This SAR showed that an aromatic ring with a hydrogen bond donor at the optimal position/ orientation was preferred for potency. For reasons that are unclear to us, substituting the 3-phenol with 3-aniline (compound 16) resulted in potency similar to that of compound 11. The 4 -aniline direct analog (compound 17) lost almost 100-fold potency compared with the 4-phenol compound 12.

Due to the potential liability of the phenol and aniline moieties, ${ }^{[16]}$ we sought an isosteric approach in an attempt to circumvent the potential liability. Indazole has been used as an isostere for phenol, ${ }^{[17]}$ so we synthesized compounds in this series to explore the SAR. As reported in the literature, ${ }^{[18]} 2$ aminopyridine has been widely used in drug discovery programs as a substitute for aniline. Thus, compounds 18-22 were synthesized (Table 4). Among these compounds, analog 22 demonstrated the best potency of $0.022 \mu \mathrm{M}$, equipotent to the initial lead compound 16. This SAR exploration gave us the 2aminopyridine as the optimal functional group on the righthand side. Concurrent with optimization on the right-hand side of the molecule, we sought to further optimize the left-handside functional groups and fixed the right-hand side as 3methoxyphenyl to explore single point changes.

SAR Exploration of the Left-hand Side of the Molecule

As shown in Table 5, compounds 23-26 were synthesized and tested for PKR binding, activation, and PDE 3B inhibition.

Table 4. Analogs 18-22 for the right-hand-side SAR exploration.
(

18

19

1.300
3.27

ND

20

1.100
2.406

ND

21

0.045
0.251

0.022
0.031
0.07
$\mathrm{AC}_{50}=$ half-maximal activation concentration; ATP $=$ adenosine triphosphate; $N D=$ not determined; PKR=red blood cell-specific form of pyruvate kinase; $S A R=$ structure activity relationship.

Compared with the methyl group in compound 10, the ethyl group in compound 23 reduced PKR binding potency. However, both compounds had better PDE inhibition profiles compared with compound 2. A saturated aliphatic cyclic hydrocarbon, such as a cyclohexyl methyl group (compound 24), was associated with a significantly reduced PKR binding potency but a significantly improved PDE 3B profile. The deterioration of the PKR binding potency could be due to the loss of the π-edge interaction with the F69 residue.

We then explored the addition of aromatic rings on the lefthand side of the molecule. Compound 25 , which is close to a pseudo-C2-symmetric molecule, regained most of the PKR potency compared with compound 24 . At the same time, PDE $3 B$ inhibition was completely mitigated. Leveraging the righthand SAR, an aromatic ring with a hydrogen bond donor was thought to be an effective group for participating in the desired hydrogen bond donor/acceptor interaction. Compound 26, with a pyrazolomethyl group on the left-hand side, was synthesized and demonstrated further improved potency of $0.014 \mu \mathrm{M}$. Furthermore, compound 26 was devoid of PDE 3B inhibition (more than $100 \mu \mathrm{M}$). Based on this SAR investigation, we concluded that the pyrazolomethyl group was optimized as the left-hand-side group.

From the extensive SAR described, combining the 2-aminopyridine on the right-hand side with a pyrazolomethyl on the left-hand side led to compound 27 (Figure 5A), which was identified as the clinical candidate AG-946 for advancement in human clinical trials. Overall, compound 27 (AG-946) has a pseudo-C2-symmetric shape, as shown in the crystal structure (Figure 5B). The thiazolopyrrolopyridazinone tricyclic core maintains $\pi-\pi$ interaction with the two F69 residues from adjacent protomers. Combination of the best fragments in the righthand side and the left-hand side enhances the molecular interactions for compound 27 (AG-946) by extending a number of additional contacts within the PKR dimer interface, explaining the enhanced potency. The aromatic rings of the 2 aminopyridinemethyl group and pyrazolomethyl groups host π edge interactions with F69, van der Waals interaction with L437, and the key hydrogen bond interactions with D397. These groups also host additional water-mediated hydrogen bond interactions with N361 and D397. Compound 27 (AG-946) showed very good activity to WT PKR, K410E, and the prototypical unstable R510Q, as well as other mutant PKR enzymes (Figure 6).

Biochemical Characterization of Compound 27 (AG-946)

Compound 27 (AG-946) demonstrated good activity in cellbased assays using purified RBCs, with an average $A C_{50}$ for PKR activation of $35 \pm 12 \mathrm{nM}$ and an average maximum percent PKR activation of $197 \pm 13 \%$ ($N=13$ experiments). The average $A C_{50}$ for increase in ATP levels was $17 \pm 7 \mathrm{nM}$, and the average

A

27 (AG-946)

B

Figure 5. Compound 27 (A) and co-crystal structure of compound 27 (AG-946) bound to PKR with a bridged water interaction (B). Cmpd = compound; PKR = red blood cell-specific form of pyruvate kinase; Wat = water.

Figure 6. (Top) Bar graph depicting the fold activation of a panel of different PKR enzymes. Error bars represent the standard error of the mean. (Bottom) Relative potency and activation levels measured by dose response of compound 27 (AG-946) using an in vitro coupled enzymatic assay. $\mathrm{AC}_{50}=$ half-maximal activation concentration; cmpd = compound; ND = not determined; $\mathrm{PKR}=$ red blood cell-specific form of pyruvate kinase; WT = wild-type.
percent increase in ATP levels was $145 \pm 8 \%$ ($\mathrm{N}=21$ experiments).

Compound 27 (AG-946) activated both WT PKR and a prototypically unstable PKR mutant, PKR R510Q (Figures 6 and Figure 7A). To investigate the lifetime of the induced activation of PKR by compound 27 (AG-946), activator-jump-dilution experiments were performed. In these experiments, PKR was preactivated with compounds and subsequently diluted to induce dissociation from the enzyme. The enzyme activity was measured over time to determine the rate constant associated with the loss of the activation (Figure 7B). Compound 27 (AG946) elicited a dramatically improved half-life of activation (slow
observed rate of inactivation) compared with compound 2, suggesting that activation by compound 27 (AG-946) is longerlived than activation by compound 2 .

Our previous work demonstrated that PKR activators could also stabilize certain mutant forms of PK. ${ }^{[19]}$ A modified thermostability assay, which measures the ability of a compound to protect the catalytic activity of PKR when challenged with high temperatures and a chemical denaturant, was developed (Figure 7C). Compound titration in the chemo-thermostability assay yielded the potency of stabilization. Treatment with compound 27 (AG-946) resulted in a ~ 90-fold increase in the

A

	WT	R510Q
$\mathrm{AC}_{50}(\mathrm{nM})$	5.1 ± 0.3	6.9 ± 0.5
Top	3.4 ± 0.1	9.5 ± 0.1

B

	WT PKR $\boldsymbol{t}_{1 / 2}(\min)$	R510Q PKR $\boldsymbol{t}_{1 / 2}(\mathrm{~min})$
Compound 2	6	34
Compound 27	>900	>900

C

Figure 7. Relative potency and activation levels measured by dose response of compound 27 (AG-946) using an in vitro-coupled enzymatic assay (A) and halflife of PKR activation by compound 27 (AG-946) (B). WT (left) and R510Q (right) PKR enzyme forms were preactivated with the compound, then diluted into assay buffer, and activity measurements were taken at different time points. Data were normalized to account for loss of enzyme activity over time, then fit to a single exponential decay allowing for extraction of the half-life of activation. Measurement of the ability of compounds to stabilize PKR R510Q (C). Left panels show the progress curves recorded at different compound concentrations under destabilizing conditions. Right panels show $k_{\text {obs }}$ as a function of compound concentration. $\mathrm{AC}_{50}=$ half-maximal activation concentration; $\mathrm{cmpd}=$ compound; $\mathrm{DMSO}=$ dimethyl sulfoxide; $\mathrm{EC}_{50}=$ half-maximal effective concentration; $k_{\text {obs }}=$ rate of conversion; PKR = red blood cell-specific form of pyruvate kinase; $t_{1 / 2}=$ half-life; WT = wild type.
potency of stabilization of PKR R510Q compared with compound 2 (Figure 7C).

The magnitude of stabilization of PKR R510Q by compound 27 (AG-946) was measured by modifying the chemo-thermostability assay such that a compound was held constant at the
concentration of $50 \mu \mathrm{M}$ and the chemical challenge (guanidine hydrochloride [Gnd-HCl]) was gradually increased (Supplementary Figure 3). While the magnitude of stabilization by compound 2 gradually decreased (as indicated by increasing observed rates of inactivation) as the challenge was increased, compound 27 (AG-946) was more resistant to inactivation at higher $\mathrm{Gnd}-\mathrm{HCl}$ concentrations, suggesting that the magnitude of activation, not just the potency, was larger for compound 27 (AG-946) than for compound 2.

The in vitro metabolic stability of compound 27 (AG-946) was evaluated in mouse, rat, dog, monkey, and human microsomes. Compound 27 (AG-946) was stable in human microsomes, and intrinsic clearance in mouse, rat, dog, and monkey liver microsomes were $3.29,2.21,4.05$, and $2.40 \mathrm{~L} / \mathrm{h} / \mathrm{kg}$, respectively. In contrast, compound 12 was found to be highly unstable in human, mouse, and rat microsomes, with intrinsic clearance of $6.21,55.70$, and $20.40 \mathrm{~L} / \mathrm{h} / \mathrm{kg}$, respectively.

In an off-target screening panel of 92 receptors, ion channels, enzymes, and transporters evaluated at $10 \mu \mathrm{M}$, no binding or enzymatic activity was inhibited by $>50 \%$ for compound 27.

Conclusions

Herein, we describe the discovery of compound 27 (AG-946), an investigational, potent, allosteric activator of PK with exceptionally long on-target residence time that has the potential to durably enhance RBC functionality and survival by increasing glycolysis and ATP production. The compound was optimized to have drug properties suitable for clinical development. The structure-based design effort leading to the identification of compound 27 (AG-946), based on a thieno-pyrrolo-pyridazinone chemical scaffold, focused on optimizing the spatial relationship between the C2 symmetry of the drug ligand and the binding pocket created by the obligatory two-fold symmetry of monosubunit dimerization in the tetrameric PKR enzyme. As a result, compound 27 (AG-946) achieves low nanomolar potency in both biochemical and cellular activity assays. A series of novel, biophysical, kinetic-based PK assays was developed to assess and guide medicinal chemistry design to identify compounds with the best ability to stabilize the mutant PKR R510Q (a prototypical unstable mutant), as well as to possess the long on-target residence time. Based on these criteria, compound 27 (AG-946) was selected for its high on-target activity and its capacity to stabilize both WT and unstable mutant PK proteins. Compound 27 (AG-946) was also optimized for improved selectivity, especially eliminating the undesirable off-target activity of PDE3 isoforms, which was identified early on as a liability, by taking advantage of well-described crystallographic structures of PDE isozymes. Overall, compound 27 (AG-946) represents a new investigational PK activator with potential for low projected human drug load and long pharmacodynamic duration of action, suitable for clinical development in a broad range of hemolytic anemias and diseases characterized by dyserythropoiesis. Compound 27 (AG-946) is currently being
evaluated in clinical trials for low-risk MDS (NCT05490446) and SCD (NCT04536792).

Experimental Section

Cloning, Protein Expression, and Purification. For crystallization, WT PKR_{50-574} was cloned into a pET28a vector with an N-terminal 6 xHistag and a thrombin cleavage site and expressed in E. coli strain BL21 (DE3) (Transgen), as described previously. ${ }^{20}$ Harvested cells were lysed in phosphate-buffered saline (PBS), pH 7.4, containing protease inhibitors (Roche), and the protein was purified using Ninitrilotriacetic acid (NTA) (GE Healthcare) affinity chromatography. The $6 x H i s-t a g$ was enzymatically cleaved with thrombin (Biosharp, 1,000 U) overnight and removed using Ni-NTA subtraction. Additional purification was performed by anion exchange (Resource Q, GE Healthcare) chromatography using a gradient of $0-1 \mathrm{M} \mathrm{NaCl}$ in PBS, pH 8.0. Tetrameric PKR_{50-574} was concentrated to $23.0 \mathrm{mg} / \mathrm{mL}$ and flash-frozen in liquid nitrogen for storage at $-80^{\circ} \mathrm{C}$.

The WT PKR protein and mutant (PKR R510Q) used in enzymatic activation assays were purified as described previously and used in thermostability experiments, during which the refolding step was omitted, and the soluble PKR-containing fraction was used for purification after lysis, as previously described. ${ }^{[19]}$
Crystallization, X-ray Data Collection, Processing, Structure Refinement, and Analysis. $\mathrm{PKR}_{50-574}(23.0 \mathrm{mg} / \mathrm{mL}, 20 \mathrm{mM} \mathrm{NaCl}$ in PBS, pH 8.0) was incubated with 1 mM compound (100 mM in dimethyl sulfoxide [DMSO]), 5 mM FBP, and 1 mM pyruvate at $4^{\circ} \mathrm{C}$ for 2 h . Crystals were obtained by sitting-drop vapor diffusion at $4{ }^{\circ} \mathrm{C}$ by mixing 200 nL of protein complex with 180 nL of crystallization well solution and 20 nL of lysozyme seeds, and equilibrating against $60 \mu \mathrm{~L}$ of well solution containing $10 \mathrm{mM} \mathrm{MnSO} 4,50 \mathrm{mM} \mathrm{MES} / \mathrm{KOH}$, pH 6.0 , and 11% (weight/volume percentage concentration [w/v]) polyethylene glycol 8000. The crystals were cryoprotected in the well solution supplemented with 25% glycerol and flash-frozen in liquid nitrogen. The data for PKR.compound 2 crystal were collected at Shanghai Synchrotron Radiation Facility (SSRF) using beamline BL17U1 with an ADSC Quantum 315r detector, PKR•compound 12 crystal was collected at the SSRF beamline BL19U1 with a Pilatus3 6 M detector, and the PKR•AG-27 (PKR•AG-946) crystal was collected at the SSRF BL17U1 with the Eiger16M detector. All data were processed with HKL2000 (HKL Research Inc.). ${ }^{[20]}$ Initial phases were obtained by performing molecular replacement with the coordinates derived from PDB ID 2VGB as a search template using Phaser in CCP4 Suite. ${ }^{[21]}$ The restraints and coordinates of the compounds were generated by ProDrg, ${ }^{[22]}$ and iterative model building was performed using COOT ${ }^{[23]}$ and refined using REFMAC5 and Phenix. ${ }^{[24]}$ The data collection and structure refinement statistics are summarized in Supplementary Table 1. PKR•compound 2 structure contains a tetramer of PKR in the asymmetric unit, with each PKR protein containing FBP and pyruvate. The compound binds at the site between two PKR proteins. PKR $_{50-574}$ compound 12 and PKR•AG-946 structures contain two tetramers in the asymmetric unit. All figures representing structures were prepared with PyMOL (Schrödinger, Inc.) and MOE (Chemical Computing Group). Atomic coordinates and experimental structure factors have been deposited at the Research Collaboratory for Structural Bioinformatics Protein Data Bank. Deposition codes: 8TBT https://doi.org/10.2210/ pdb8tbt/pdb for PKR•compound 2, 8TBU https://doi.org/10.2210/ pdb8tbu/pdb for PKR-compound 12, and 8TBS https://doi.org/10. 2210/pdb8tbs/pdb for PKR•compound 27 complex structures. These data are available free of charge at wwPDB https://www.wwpdb. org.

Enzymatic Assay of PK Isoforms and Mutants. Enzymatic activation of WT or mutant PKR enzyme and half-life of activation were measured as described. ${ }^{[19]}$

Thermostability Studies. PKR R510Q was mixed with compound and diluted to yield a $10 \times$ final concentration of enzyme and a $1 \times$ final concentration of compound (10-point $3 \times$ serial dilution) in 70 mM MOPS, $140 \mathrm{mM} \mathrm{KCl}, 7 \mathrm{mM} \mathrm{MgCl} 2,1.4 \mathrm{mM}$ dithiothreitol (DTT), 0.007% bovine serum albumin (BSA), and 2% DMSO. After a 60-min incubation period, the enzyme:compound mixture was added to a reaction mixture containing all necessary assay components (see below) preheated to $53^{\circ} \mathrm{C}$. This preheated reaction mixture contained an appropriate amount of compound such that the concentration remained constant when the enzyme: compound mixture was added. Time-dependent changes in absorbance at 340 nm were recorded for 60 min . The final reaction mixture was $0-10 \mu \mathrm{M}$ compound, 5 mM PEP, 0.4 mM reduced form of nicotinamide adenine dinucleotide (NADH), 2 mM adenosine diphosphate (ADP), 0.45 M Gnd- $\mathrm{HCl}, 0.00125 \mathrm{U} / \mu \mathrm{L}$ thermostable flavoenzyme dye-linked lactate dehydrogenase (LDH), and $0.12 \mu \mathrm{~g} / \mathrm{mL}$ PKR in $1 \times$ thermostability reaction buffer.

The rate of conversion ($k_{\text {obs }}$) from the active $\left(v_{i}\right)$ to inactive $\left(v_{f}\right)$ enzyme was measured by fitting the progress curves to equation
$y=v_{f} t+\frac{v_{i}-v_{f}}{k_{\text {obs }}}\left(1-e^{-k_{o b s} t}\right)+C$.

The final rate was non-zero due to non-enzymatic background conversion of NADH to nicotinamide adenine dinucleotide (NAD +) under the high-temperature conditions.

Potency of stabilization was derived by plotting $k_{\text {obs }}$ vs compound concentration and fitting to a standard sigmoidal four-parameter dose-response equation. Data were analyzed using GraphPad Prism. Magnitude of stabilization experiments were carried out in a manner similar to the standard thermostability experiments, except a single $50 \mu \mathrm{M}$ compound concentration was used, and the concentration of $\mathrm{Gnd}-\mathrm{HCl}$ was varied.

Microsome. Human, rat, mouse, dog, and monkey liver microsomes (final concentration of $0.5 \mathrm{mg} / \mathrm{mL}$ in 0.1 M potassium phosphate buffer, pH 7.4) were incubated with $1 \mu \mathrm{M}$ of compound 27 for up to 45 min . Reactions were initiated by the addition of nicotinamide adenine dinucleotide phosphate (NADPH, final concentration 2 mM) to all wells except the 0 min time point. At the end of the incubation period, reactions were stopped by the addition of acetonitrile containing internal standard. For the 0 min time point, acetonitrile containing internal standard was added to the well, followed by NADPH. The assay plates were shaken and then centrifuged at $3,220 \times g$ for 10 min to pellet the precipitated protein. The supernatants were diluted with Mill-Q water before being analyzed by liquid chromatography with tandem mass spectrometry (LCMS).

RBC Purification. All biochemistry assays are described in protocol AG-946-N-049 (ChemPartner Study Number CPB $<-\mathrm{C}->$ P08-018), and use of tissue samples from human subjects was approved by the ChemPartner institutional ethics committee per protocol number IEC001-R2018 prior to the research. After receiving written informed consent (on file at ChemPartner), fresh whole blood was collected from healthy human volunteers at ChemPartner. Whole blood was centrifuged at $500 \times g$ for 10 min . The plasma layer was removed from the centrifuged unit of blood, and the cell pellet was resuspended at 50% hematocrit in PBS. Purified RBCs were isolated from the resuspended cells using a Purecell ${ }^{\oplus}$ Leukocyte Reduction Neofilter. The resuspended cell pellet was transferred to a 10 mL syringe barrel that was attached to the tubing above the filter, and
the cell suspension was allowed to flow through the Purecell Leukocyte Reduction Neofilter. The syringe plunger was inserted into the 10 mL syringe barrel to collect all filtered, purified RBCs in the collection bag. The purified RBCs were centrifuged at $500 \times g$ for 10 min at $4^{\circ} \mathrm{C}$ and resuspended in a PBS containing 1% glucose, $170 \mathrm{mg} / \mathrm{L}$ adenine, and $5.25 \mathrm{~g} / \mathrm{L}$ mannitol (AGAM) media at a volume equal to that of the starting material.

Cell-based PKR Activity and ATP Assays. Following addition of compound (0.1% final DMSO concentration), cells were incubated at $37^{\circ} \mathrm{C}$ overnight. ATP was measured using CellTiter-Glo (Promega, China), while PKR activity was assessed from purified RBC lysate using the LDH-coupled enzyme assay previously described. ${ }^{[19]}$

Cell-based PKR Activity Assay. RBCs were diluted in AGAM media to a density of 1×10^{8} cells $/ \mathrm{mL}$. Compound 27 (AG-946) serial dilutions were added to 96 -well v-bottom plates at $10 \mu \mathrm{~L} /$ well, then purified RBCs (90 mL) were added before the assay plates were covered with aluminum foil seals. All experiments were conducted in triplicate. Plates were incubated at $37^{\circ} \mathrm{C}$ in a humidified, noncarbon dioxide $\left(\mathrm{CO}_{2}\right)$ chamber for $17-20 \mathrm{~h}$, then washed by centrifugation at $600 \times \mathrm{g}$ for 5 min , removing $90 \mu \mathrm{~L}$ of supernatant, then adding $200 \mu \mathrm{~L}$ of PBS per well and repeating centrifugation at $600 \times g$ for 5 min . Supernatant 200 mL per well was removed and $100 \mu \mathrm{~L}$ of activity assay buffer per well was added. The plates were covered using aluminum foil seals, frozen on dry ice, and stored at $-80^{\circ} \mathrm{C}$ until assayed for PKR activity. The plates were thawed and RBC lysates were diluted to achieve an optimal concentration for the PKR activity assay by adding $10 \mu \mathrm{~L}$ of RBC lysate to $190 \mu \mathrm{~L}$ of activity assay buffer and mixing well. The PKR protein concentration was determined using a bicinchoninic acid kit. The lysate was further diluted to achieve a concentration range of $1-2 \mathrm{mg} / \mathrm{mL}$ by addition of either more RBC lysate or activity assay buffer. Diluted RBC lysate ($10-20 \mu \mathrm{~g}$ protein/well) was added to an ultraviolettransparent 96 -well plate at a volume of $10 \mu \mathrm{~L} /$ well. To initiate the reaction, $190 \mu \mathrm{~L}$ master mix (consisting of the following final assay buffer concentrations: 50 mM tris-hydrochloride [HCl], pH 7.5 ; $100 \mathrm{mM} \mathrm{KCl} ; 5 \mathrm{mM} \mathrm{MgCl}$; $0.3 \mathrm{mg} / \mathrm{mL}$ BSA; $250 \mu \mathrm{M} \mathrm{NADH;} 3 \mathrm{mU} / \mu \mathrm{L}$ LDH; 2 mM ADP; $50 \mu \mathrm{M}$ PEP) was added to the wells containing the RBC lysate. Plates were read on a SpectraMax ${ }^{\oplus}$ Plus 384 microplate reader (Molecular Devices, LLC) set to kinetic mode (i.e., readings taken every 40 sec for 0.5 h at an absorbance of 340 nm). The PKR activity was determined by evaluating the reaction slope in the linear portion of the reaction (often $2-33 \mathrm{~min}$) and normalizing to the protein concentration of the lysate (final units: $\mu \mathrm{mol} / \mathrm{sec} / \mathrm{mg}$ of protein).

Cell-based RBC ATP Assay. Purified RBCs were diluted in AGAM media containing 10% fetal bovine serum to a density of 1×10^{7} cells $/ \mathrm{mL}$. The compound was serially diluted ($0-20,000 \mathrm{nM}$) and added to 96 -well black assay plates at a quantity of $10 \mu \mathrm{~L} /$ well; all experiments were conducted in triplicate. Purified RBCs ($90 \mathrm{~mL} /$ well) were added to these wells and the assay plates covered using aluminum foil seals. Plates were incubated at $37^{\circ} \mathrm{C}$ in a humidified non- CO_{2} chamber for $17-20 \mathrm{~h}$, following which $100 \mu \mathrm{~L}$ of CellTiter-Glo was added to each well. Further, each assay plate was placed on an orbital shaker for 30 min and read for luminescence.

Chemistry

General Experimental Notes. In the following examples, the chemical reagents were purchased from commercial sources (such as Alfa, Acros, Sigma Aldrich, TCI, and Shanghai Chemical Reagent Company) and used without further purification. Flash chromatography was performed on an Ez Purifier III via column chromatography with silica gel particles of $200-300$ mesh. Analytic and
preparative thin layer chromatography (prep-TLC) plates were HSGF254 ($0.15-0.2 \mathrm{~mm}$ thickness, Shanghai Anbang Company, China). Nuclear magnetic resonance (NMR) spectra were recorded using Bruker AMX-300 or AMX-400 NMR (Bruker, Billerica, MA). Chemical shifts were reported in parts per million (δ) downfield from tetramethyl silane. Mass spectra were run with electrospray ionization (ESI) from a Waters LCT TOF Mass Spectrometer (Waters, USA). High-performance liquid chromatography (HPLC) chromatographs were recorded on an Agilent 1200 Liquid Chromatography instrument (Agilent, USA, column: Ultimate $4.6 \mathrm{~mm} \times 50 \mathrm{~mm}, 5 \mathrm{mM}$, mobile phase A: 0.1% formic acid in water; mobile phase B: acetonitrile). Microwave reactions were run on an Initiator 2.5 Microwave Synthesizer (Biotage, Sweden).

Experimental Procedures. Compounds 1 and 2 are literature compounds.

6-(3-methoxybenzyl)-2,4-dimethyl-4H-thieno[3,2-b]indole (3)

NaHCO_{3} ($257 \mathrm{mg}, 3.0 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ ($140 \mathrm{mg}, 0.12 \mathrm{mmol}$) were added to a mixture of 4-bromo-1-iodo-2-nitrobenzene ($400 \mathrm{mg}, 1.2 \mathrm{mmol}$), 5-methylthiophen-2-ylboronic acid (278 mg , 1.9 mmol) in tetrahydrofuran (THF, 8 mL) and water (2 mL). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 1 h under a nitrogen atmosphere. The mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate (EtOAc). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel chromatography (eluted with petroleum ether (PE): $\mathrm{EtOAc}=100: 1$) to give 2-(4-bromo-2-nitrophenyl)-5-methylthiophene ($300 \mathrm{mg}, 83 \%$ yield).

A mixture of 2-(4-bromo-2-nitrophenyl)-5-methylthiophene $(300 \mathrm{mg}, 1 \mathrm{mmol})$ in triethyl phosphate (2 mL) was stirred at $170^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography (eluted with PE: $\mathrm{EtOAc}=10: 1$) to give 6-bromo-2-methyl-4H-thieno[3,2-b]indole ($260 \mathrm{mg}, 98 \%$ yield). LCMS (ESI): mass over charge number (m / z) $266(\mathrm{M}+\mathrm{H})^{+}$.

Sodium hydride ($80 \mathrm{mg}, 2.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added to a solution of 6-bromo-2-methyl-4H-thieno[3,2-b]indole ($260 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dimethylformamide (DMF) (5 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . Mel ($180 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for another 2 h . The mixture was then poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography (eluted with $\mathrm{PE}: E t O A c=10: 1$) to give 6-bromo-2,4-dimethyl-4H-thieno[3,2-b]indole ($160 \mathrm{mg}, 58 \%$ yield). LCMS (ESI): m/z 280 $(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($45 \mathrm{mg}, 0.42 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}(11 \mathrm{mg}, 0.014 \mathrm{mmol})$ were added to a mixture of 6-bromo-2,4-dimethyl-4H-thieno[3,2b]indole $(40 \mathrm{mg}, \quad 0.14 \mathrm{mmol})$ and 2 -(3-methoxybenzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($70 \mathrm{mg}, 0.28 \mathrm{mmol}$) in MeCN $(8 \mathrm{~mL})$ and water $(4 \mathrm{~mL})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 1 h under a nitrogen atmosphere. The mixture was cooled to room temperature, diluted with water, and extracted with EtOAc.

The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography (eluted with $P E: E t O A c=10: 1$) to give 6-(3-methoxybenzyl)-2,4-dimethyl-4H-thieno[3,2-b]indole ($25 \mathrm{mg}, 54 \%$ yield) as a white solid. LCMS (ESI): m/z $322(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48$ (d, $1 \mathrm{H}), 7.12(\mathrm{t}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{dd}, 1 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}), 6.72-6.64$ $(\mathrm{m}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, 3 \mathrm{H})$.

3-(3-methoxybenzyl)-5,7-dimethyl-3H-thieno[2',3':4,5]pyrrolo[3,2-d]pyrimidin-4(5H)-one (4)

N -bromosuccinimide ($1 \mathrm{~g}, 5.7 \mathrm{mmol}$) was added to a mixture of ethyl 2-methyl-4H-thieno[3,2-b]pyrrole-5-carboxylate $(800 \mathrm{mg}$, $3.8 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 30 min or until the reaction was complete, detected by thin layer chromatography (TLC) ($\mathrm{PE}: E t O A c=5: 1$). The reaction solution was poured into water. The aqueous layer was extracted with EtOAc. The organic layer was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (eluted with PE:ethyl acetate $(E A)=20: 1$) to give ethyl 6-bromo-2-methyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($400 \mathrm{mg}, 40 \%$ yield) as a yellow solid. LCMS: $287(\mathrm{M}+\mathrm{H})^{+}$.
lodomethane ($2.93 \mathrm{~g}, 1.70 \mathrm{mmol}$) was added to a solution of ethyl 6-bromo-2-methyl-4H-thieno[3,2-b]pyrrole-5-carboxylate (400 mg , $1.40 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(288 \mathrm{mg}, 2.10 \mathrm{mmol})$ in DMF (6 mL). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . TLC (PE:EtOAc $=6: 1$) showed the reaction was complete. The reaction mixture was poured into water, the aqueous layer was extracted with EtOAc, and the organic layer was concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluted with $\mathrm{PE}: E t O A C=30: 1$) to give ethyl 6-bromo-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($300 \mathrm{mg}, 72 \%$ yield) as a white solid. LCMS: $301(\mathrm{M}+\mathrm{H})^{+}$.

Diphenylmethanimine ($490 \mathrm{mg}, 2.7 \mathrm{mmol}$) under nitrogen was added to a mixture of ethyl 6-bromo-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate $(400 \mathrm{mg}, \quad 1.30 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}$, $4 \mathrm{mmol})$, and Xant-Phos ($150 \mathrm{mg}, 0.27 \mathrm{mmol}$) in dioxane (10 mL). The mixture was stirred at $100^{\circ} \mathrm{C}$ overnight and TLC (PE:EtOAc $=$ $6: 1)$ showed the reaction was complete. The reaction mixture was poured into water, the aqueous layer was extracted with EtOAc, and the organic layer was concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluted with $\mathrm{PE}: E t O A c=20: 1$) to give ethyl 6-(diphenylmethyleneamino)-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($380 \mathrm{mg}, 71 \%$ yield) as a yellow solid. LCMS: $403(\mathrm{M}+\mathrm{H})^{+}$.

A mixture of ethyl 6-(diphenylmethyleneamino)-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($200 \mathrm{mg}, 0.50 \mathrm{mmol}$) in 1 M HCl $(1 \mathrm{~mL})$ and THF (1 mL) was stirred at ambient temperature for 2 h , and TLC (PE:EtOAc $=3: 1$) showed the reaction was complete. The reaction mixture was poured into water, the aqueous layer was extracted with EtOAc, and the organic layer was concentrated
under reduced pressure to give ethyl 6-amino-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($110 \mathrm{mg}, 92 \%$ yield) as a yellow oil. LCMS: $239(\mathrm{M}+\mathrm{H})^{+}$.

Dimethylformamide dimethyl acetal ($128 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added to a mixture of ethyl 6-amino-2,4-dimethyl-4H-thieno[3,2-b]pyrrole5 -carboxylate ($110 \mathrm{mg}, 0.46 \mathrm{mmol}$) in DMF (5 mL). The mixture was stirred at ambient temperature for 2 h , when TLC (PE:EtOAc = 1:1) showed the reaction was complete. The reaction mixture was poured into water, the aqueous layer was extracted with EtOAc, and the organic layer was concentrated under reduced pressure to give (E)-ethyl 6-((dimethylamino)methyleneamino)-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($120 \mathrm{mg}, 94 \%$ yield) as a yellow oil, which was used without further purification. LCMS: 294 $(\mathrm{M}+\mathrm{H})^{+}$.
(3-methoxyphenyl)methanamine ($46 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added to a mixture of (E)-ethyl 6-((dimethylamino)methyleneamino)-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($80 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{TsOH}(92 \mathrm{mg}, 0.54 \mathrm{mmol})$ in toluene (3 mL). The mixture was stirred at $100^{\circ} \mathrm{C}$ for about 12 h , whereupon TLC (PE:EtOAc $=1: 1$) showed the reaction was complete. The mixture was concentrated under reduced pressure. The residue was diluted with water and the mixture was extracted with EtOAc. The organic layer was concentrated under reduced pressure, and the residue was purified by silica gel chromatography to give 3-(3-methoxybenzyl)-5,7-dimethyl-3H-thieno[2',3':4,5]pyrrolo[3,2-d]pyrimidin-4(5H)-one ($20 \mathrm{mg}, 20 \%$ yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ $8.36(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.85$ $(\mathrm{m}, 3 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H})$. LCMS: $340(\mathrm{M}+\mathrm{H})^{+}$.

6-(3-methoxybenzyl)-2,4-dimethyl-6,7-dihydropyrrolo[3,4-b]thieno[2,3-d]pyrrol-5(4H)-one (5)

residue was purified by silica gel chromatography to give ethyl 6-formyl-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate (250 mg , 74% yield) as a yellow solid. LCMS (ESI): m/z $252(\mathrm{M}+\mathrm{H})^{+}$.
A mixture of ethyl 6-formyl-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5carboxylate $\quad(150 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$ and (3-methoxyphenyl)methanamine ($98 \mathrm{mg}, 0.7 \mathrm{mmol}$) in toluene (20 mL) was stirred at $60^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAC})_{3}(380 \mathrm{mg}, 1.8 \mathrm{mmol})$ was then added at $0^{\circ} \mathrm{C}$ and stirred at room temperature overnight. The mixture was poured into water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography to give ethyl 6-(((3-methoxybenzyl)amino)methyl)-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylate ($80 \mathrm{mg}, 36 \%$ yield) as a white solid. LCMS (ESI): m/z $373(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{NaOH}(16 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added to a mixture of $6-(((3-$ methoxybenzyl)amino)methyl)-2,4-dimethyl-4H-thieno[3,2-b]-
pyrrole-5-carboxylate ($50 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (5 mL). The mixture was stirred at $30^{\circ} \mathrm{C}$ overnight, acidified to $\mathrm{pH}=$ 3 with aqueous HCl , and extracted with dichloromethane (DCM). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 6-(((3-methoxybenzyl)amino)methyl)-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylic acid ($50 \mathrm{mg}, 100 \%$ yield) as a white solid, which was used directly in the next step. LCMS (ESI): $\mathrm{m} / \mathrm{z} 345(\mathrm{M}+\mathrm{H})^{+}$.

4-dimethylaminopyridine (DMAP) ($35 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) ($55 \mathrm{mg}, 0.3 \mathrm{mmol}$) were added to a mixture of 6-(((3-methoxybenzyl)amino)methyl)-2,4-dimethyl-4H-thieno[3,2-b]pyrrole-5-carboxylic acid (50 mg , 0.15 mmol) in DCM (10 mL). After stirring at $30^{\circ} \mathrm{C}$ overnight, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by prep-TLC to give 6-(3-meth-oxybenzyl)-2,4-dimethyl-6,7-dihydropyrrolo[3,4-b]thieno[2,3-d]-pyrrol-5(4H)-one ($16 \mathrm{mg}, 34 \%$ yield) as a white solid. LCMS (ESI): $\mathrm{m} / \mathrm{z} 327(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}\right) \delta 7.25(\mathrm{t}, 1 \mathrm{H}), 6.98$ (s, 1H), 6.79-6.86 (m, 3H), 4.59 (s, 2H), 4.18 (s, 2H), 3.86 (s, 3H), 3.73 $(\mathrm{s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.

6-(3-methoxybenzyl)-2,4-dimethyl-4,6-

dihydropyrazolo[$\left.3^{\prime}, 4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5(2H)-one (6)

$\mathrm{NaH}(4.3 \mathrm{~g}, 108 \mathrm{mmol})$ and iodomethane ($1.15 \mathrm{~g}, 81 \mathrm{mmol}$) were added to a solution of 1 H -pyrazole-3-carbaldehyde ($5.2 \mathrm{~g}, 54 \mathrm{mmol}$) in DMF (30 mL). The mixture was stirred at room temperature for 2 h . The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic phase was washed with brine,
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by silica gel chromatography (eluted with PE: $\mathrm{EtOAc}=20: 1$) to obtain 1-methyl-1H-pyrazole-3-carbaldehyde $\left(4.18 \mathrm{~g}, 70 \%\right.$ yield) as a white solid. LCMS (ESI): m/z $111(\mathrm{M}+\mathrm{H})^{+}$.

1-methyl-1H-pyrazole-3-carbaldehyde ($1.0 \mathrm{~g}, 9.2 \mathrm{mmol}$) and azidoacetic acid ethyl ester ($1.3 \mathrm{~g}, 10.1 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$ were added to a solution of sodium ethoxide (EtONa) ($1.8 \mathrm{~g}, 18.4 \mathrm{mmol}$) in ethanol (EtOH) (20 mL). After stirring for 3 h , the reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by silica gel chromatography (eluted with $\mathrm{PE}: E t O A c=10: 1$) to obtain (Z)-ethyl 2-azido-3-(1-methyl-1H-pyrazol-3-yl)acrylate ($0.77 \mathrm{~g}, 38 \%$ yield) as a white solid. LCMS (ESI): m/z $222(\mathrm{M}+\mathrm{H})^{+}$.

A mixture of (Z)-ethyl 2-azido-3-(1-methyl-1H-pyrazol-3-yl)acrylate ($0.77 \mathrm{~g}, 3.5 \mathrm{mmol}$) in o-xylene (15 mL) was heated to reflux for 2 h . The reaction mixture was concentrated and the residue was purified by silica gel chromatography (eluted with PE:EtOAc=5:1) to obtain ethyl 2-methyl-2,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($500 \mathrm{mg}, 82 \%$ yield) as a white solid. LCMS (ESI): m/z 194 $(\mathrm{M}+\mathrm{H})^{+}$.

NaH ($207 \mathrm{mg}, 5.2 \mathrm{mmol}$) and iodomethane ($552 \mathrm{mg}, 3.9 \mathrm{mmol}$) were added to a solution of ethyl 2-methyl-2,4-dihydropyrrolo[3,2c] pyrazole-5-carboxylate ($500 \mathrm{mg}, 2.6 \mathrm{mmol}$) in DMF (10 mL). The mixture was stirred at room temperature for 2 h , poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by silica gel chromatography (eluted with $\mathrm{PE}: E t O A c=15: 1$) to obtain ethyl 2,4-dimethyl-2,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($500 \mathrm{mg}, 93 \%$ yield) as a white solid. LCMS (ESI): m/z $208(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{POCl}_{3}(1.85 \mathrm{~g}, 12.1 \mathrm{mmol})$ was added to a mixture of ethyl $2,4-$ dimethyl-2,4-dihydropyrrolo[3,2-c] pyrazole-5-carboxylate (500 mg , 2.4 mmol) in DMF (10 mL). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 h , poured into water, and extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by silica gel chromatography (eluted with $\mathrm{PE}: \mathrm{EtOAc}=15: 1$) to obtain ethyl 6-formyl-2,4-dimethyl-2,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($150 \mathrm{mg}, 26 \%$ yield) as a white solid. LCMS (ESI): m/z $236(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(319 \mathrm{mg}, 6.4 \mathrm{mmol})$ was added to a solution of ethyl 6-formyl-2,4-dimethyl-2,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate $(150 \mathrm{mg}, 0.64 \mathrm{mmol})$ in 2-ethoxyethanol $(5 \mathrm{~mL})$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h , poured into water, and extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by silica gel chromatography (eluted with $\mathrm{PE}: \mathrm{EtOAc}=3: 1$) to obtain 2,4-dimethyl-4,6-dihydropyra-zolo[3',4':4,5]pyrrolo[2,3-d]pyridazin-5(2H)-one (120 mg, 92% yield) as a white solid. LCMS (ESI): m/z $204(\mathrm{M}+\mathrm{H})^{+}$.
t-BuOK ($33 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-chloromethyl-3-methoxy-benzene $(46 \mathrm{mg}, 0.3 \mathrm{mmol})$ were added to a solution of 2,4 -dimethyl-4,6dihydropyrazolo[$\left.3^{\prime}, 4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5(2H)-one (30 mg, 0.15 mmol) in DMF (3 mL). The mixture was stirred at room temperature for 2 h . The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by prep-TLC (EtOAc:PE= 3:1) to obtain 6-(3-methoxybenzyl)-2,4-dimethyl-4,6-dihydropyra-zolo[3',4':4,5]pyrrolo[2,3-d]pyridazin-5(2H)-one (10 mg, 26% yield) as a white solid. LCMS (ESI): m/z $324(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{t}, 1 \mathrm{H}), 6.82-6.89(\mathrm{~m}, 3 \mathrm{H})$, $5.33(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.

6-(3-methoxybenzyl)-1,4-dimethyl-4,6-
dihydropyrazolo[3',4':4,5]pyrrolo[2,3-d]pyridazin-5(1H)-one (7)

NIS ($3.4 \mathrm{~g}, 15 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a stirred mixture of 1 -methyl-1H-pyrazole-5-carbaldehyde ($1.1 \mathrm{~g}, 10 \mathrm{mmol}$) in trifluoroacetic acid (TFA; 10 mL). After stirring at room temperature for 16 h , the reaction mixture was poured into saturated NaHCO_{3} and extracted with DCM. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography (eluted with PE:EtOAc $=35: 1$) to obtain 4-iodo-1-methyl-1H-pyrazole-5-carbaldehyde ($1.8 \mathrm{~g}, 76 \%$ yield) as a white solid. LCMS (ESI): m/z $237(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{Cs}_{2} \mathrm{CO}_{3} \quad(274 \mathrm{mg}, \quad 0.84 \mathrm{mmol})$, ethyl 2-isocyanoacetate $(53 \mathrm{mg}$, $0.47 \mathrm{mmol})$ and Cul ($15 \mathrm{mg}, 0.08 \mathrm{mmol}$) were added to a stirred mixture of 4-iodo-1-methyl-1H-pyrazole-5-carbaldehyde (100 mg , 0.42 mmol) in DMF (10 mL). The reaction mixture was stirred under N_{2} at $50^{\circ} \mathrm{C}$ for 1 h and $95^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was poured into water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography (eluted with $\mathrm{DCM}: \mathrm{MeOH}=$ 35:1) to obtain ethyl 1-methyl-1,4-dihydropyrrolo[3,2-c]pyrazole-5carboxylate ($40 \mathrm{mg}, 50 \%$ yield) as a white solid. LCMS (ESI): m/z 194 $(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{POCl}_{3}(230 \mathrm{mg}, 1.5 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$ to a stirred mixture of ethyl 1-methyl-1,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($193 \mathrm{mg}, 1 \mathrm{mmol}$) in dry DMF (5 mL). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 3 h and then cooled down. The reaction mixture was poured into water and extracted with DCM. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain ethyl 6-formyl-1-methyl-1,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($180 \mathrm{mg}, 86 \%$ yield) as a white solid. LCMS (ESI): m/z $222(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2 \mathrm{mmol})$ and $\mathrm{Mel}(280 \mathrm{mg}, 2 \mathrm{mmol})$ were added to a stirred mixture of ethyl 6-formyl-1-methyl-1,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($220 \mathrm{mg}, 1 \mathrm{mmol}$) in dry DMF (5 mL). After stirring at room temperature overnight, the reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography (eluted with PE: $\mathrm{EtOAc}=15: 1$) to obtain ethyl 6-formyl-1,4-dimethyl-1,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($200 \mathrm{mg}, 87 \%$ yield) as a white solid. LCMS (ESI): m/z $236(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ ($200 \mathrm{mg}, 4 \mathrm{mmol}, ~ 98 \%$ weight by weight [w/w]) was added to a stirred mixture of ethyl 6-formyl-1,4-dimethyl-1,4-dihydropyrrolo[3,2-c]pyrazole-5-carboxylate ($470 \mathrm{mg}, 2 \mathrm{mmol}$) in 2methoxyethanol $(5 \mathrm{~mL})$. The reaction mixture was stirred at $105^{\circ} \mathrm{C}$ for 3 h , diluted with water, and extracted with DCM. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to obtain 1,4-dimethyl-4,6-dihydropyrazolo-
[3', 4':4,5]pyrrolo[2,3-d]pyridazin-5(1H)-one (400 mg, 98\% yield) as a white solid. LCMS (ESI): m/z $204(\mathrm{M}+\mathrm{H})^{+}$.
t-BuOK ($224 \mathrm{mg}, \quad 2.0 \mathrm{mmol}$) and 1-(chloromethyl)-3-methoxybenzene ($312 \mathrm{mg}, 2 \mathrm{mmol}$) were added to a stirred mixture of 1,4-dimethyl-4,6-dihydropyrazolo[3',4':4,5]pyrrolo[2,3-d]pyridazin$5(1 \mathrm{H})$-one ($203 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (4 mL). The reaction mixture was stirred at room temperature for 2 h . The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with DCM. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography (eluted with DCM:MeOH = 30:1) to obtain 6-(3-methoxybenzyl)-1,4-dimethyl-4,6-dihydropyrazolo[3', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5(1H)-one ($30 \mathrm{mg}, 9 \%$ yield) as a white solid. LCMS (ESI): m/z $324(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 724(\mathrm{t}, 1 \mathrm{H})$, 6.88-6.80 (m, 3H), $5.33(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.

6-(3-methoxybenzyl)-2,4-dimethyl-4,6-dihydro-5H-

oxazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5-one (8)

A mixture of 2-methyloxazole-5-carbaldehyde ($1.0 \mathrm{~g}, 9.0 \mathrm{mmol}$) and ethyl 2-azidoacetate ($3.4 \mathrm{~g}, 27 \mathrm{mmol}$) was added at $-10^{\circ} \mathrm{C}$ over 1 h to a solution of $\mathrm{Na}(0.65 \mathrm{~g}, 27 \mathrm{mmol})$ in dry $\mathrm{EtOH}(10 \mathrm{~mL})$. The reaction mixture was stirred at $5^{\circ} \mathrm{C}$ for another hour, then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give ethyl 2-azido-3-(2-methyloxazol-5-yl)acrylate (1.1 g crude).

A solution of ethyl 2-azido-3-(2-methyloxazol-5-yl)acrylate (1.1 g) in xylene (30 mL) was stirred at $160^{\circ} \mathrm{C}$ for 30 min and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give ethyl 2-methyl-4H-pyrrolo[2,3-d]oxazole-5carboxylate ($0.25 \mathrm{~g}, 15 \%$ yield). LCMS (ESI): m/z $195(\mathrm{M}+\mathrm{H})^{+}$.

NaH (104 mg, 2.6 mmol) was added at $0^{\circ} \mathrm{C}$ to a solution of ethyl 2-methyl-4H-pyrrolo[2,3-d]oxazole-5-carboxylate ($0.25 \mathrm{~g}, 1.3 \mathrm{mmol}$) in DMF (10 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . $\mathrm{Mel}(0.23 \mathrm{~g}$, 1.7 mmol) was added, and the mixture was stirred at room temperature for 2 h , poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with EtOAc. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography to give ethyl 2,4-dimethyl-4H-pyrrolo[2,3-d]oxa-zole-5-carboxylate ($0.2 \mathrm{~g}, 70 \%$ yield). LCMS (ESI): m/z $209(\mathrm{M}+\mathrm{H})^{+}$.

A solution of ethyl 2,4-dimethyl-4H-pyrrolo[2,3-d]oxazole-5-carboxylate ($0.2 \mathrm{~g}, 1.0 \mathrm{mmol}$) and $\mathrm{POCl}_{3}(0.3 \mathrm{~g}, 2.0 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ overnight. The reaction mixture was poured into saturated NaHCO_{3} and extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel chromatography to give ethyl 6-formyl-2,4-dimethyl-4H-pyrrolo[2,3-d]-
oxazole-5-carboxylate (100 mg, 45% yield). LCMS (ESI): m/z 237 $(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to a solution of ethyl 6-formyl-2,4-dimethyl-4H-pyrrolo[2,3-d]oxazole-5-carboxylate
($100 \mathrm{mg}, 0.42 \mathrm{mmol}$) in 2-methoxyethanol (15 mL). The solution was stirred at $100^{\circ} \mathrm{C}$ overnight and concentrated under reduced pressure. The residue was purified by prep-TLC to give 2,4-dimethyl-4,6-dihydro-5H-oxazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-
d]pyridazin-5-one ($50 \mathrm{mg}, 50 \%$ yield). LCMS (ESI): m/z 205 $(\mathrm{M}+\mathrm{H})^{+}$.
t-BuOK ($40 \mathrm{mg}, 0.34 \mathrm{mmol}$) under N_{2} was added at $0^{\circ} \mathrm{C}$ to a solution of 2,4-dimethyl-4,6-dihydro-5H-oxazolo[5',4':4,5]pyrrolo[2,3-d]pyri-dazin-5-one ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) in DMF (5 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min , then 1 -(chloromethyl)-3-methoxybenzene ($40 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for another 2 h . The mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by prep-HPLC to give 6-(3-methoxybenzyl)-2,4-dimethyl-4,6-dihydro-5H-oxazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5one ($2 \mathrm{mg}, 3 \%$ yield). LCMS (ESI): m/z $325(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.95(\mathrm{~m}, 1 \mathrm{H})$, $6.89(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{dd}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.61$ $(\mathrm{s}, 3 \mathrm{H})$.

3-(3-methoxybenzyl)-5,8-dimethyl-3,5-dihydro-4H-pyridazino[4,5-b]indol-4-one (9) was synthesized similarly

LCMS: m/z $334(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\left.-d_{6}\right)} \delta 8.77(\mathrm{~s}, 1 \mathrm{H})$, $7.99(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dt}, J=10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 3 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 3 \mathrm{H})$, 3.72 (s, 3H), 2.49 (s, 3H).

6-(3-methoxybenzyl)-2,4-dimethyl-4,6-dihydro-5H-
thiazolo[5',4':4,5]pyrrolo[2,3-d]yridazine-5-one (10)

A solution of 2-methylthiazole-5-carbaldehyde ($500 \mathrm{mg}, 3.93 \mathrm{mmol}$) and ethyl 2-azidoacetate ($1.53 \mathrm{~g}, 11.79 \mathrm{mmol}$) in anhydrous EtOH $(3 \mathrm{~mL})$ was added dropwise to a solution of EtONa (803 mg , 11.79 mmol) in $\mathrm{EtOH}(10 \mathrm{~mL})$ at approximately $-10^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}$. The reaction mixture was stirred for approximately 1 h while the temperature was maintained below $0^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for another 2 h . The resulting mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give
the desired product (500 mg), which was directly used in the next step without any purification. LCMS: m/z $239(\mathrm{M}+\mathrm{H})^{+}$.

A mixture of ethyl (Z)-2-azido-3-(2-methylthiazol-5-yl)acrylate $(500 \mathrm{mg}, 2.1 \mathrm{mmol})$ in o-xylene $(5 \mathrm{~mL})$ was stirred at $140^{\circ} \mathrm{C}$ for 2 h , then cooled to room temperature and directly purified by column chromatography on silica gel (eluent: pentane/EtOAc=6/1) to give the desired product ($220 \mathrm{mg}, 49.8 \%$ yield) as a white solid. LCMS: $\mathrm{m} / \mathrm{z} 211(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{NaH}(36.5 \mathrm{mg}, 1.52 \mathrm{mmol})$ was added to a solution of ethyl 2-methyl-4H-pyrrolo[2,3-d]thiazole-5-carboxylate ($160 \mathrm{mg}, 0.76 \mathrm{mmol}$) in DMF $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 0.5 h , followed by the addition of $\mathrm{CH}_{3} \mathrm{I}(47 \mu \mathrm{~L}, 0.76 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 0.5 h , then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: pentane/EtOAc $=6 / 1$) to give the desired product (124 mg , 72.6% yield) as a white solid. LCMS: m/z $225(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{POCl}_{3}(122.5 \mu \mathrm{~L}, 1.338 \mathrm{mmol})$ was added to a mixture of ethyl 2,4-dimethyl-4H-pyrrolo[2,3-d]thiazole-5-carboxylate ($100 \mathrm{mg}, 0.446 \mathrm{mmol}$) in DMF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h , poured into saturated aqueous NaHCO_{3} at $0^{\circ} \mathrm{C}$, and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: pentane/EtOAc $=5 / 1$) to give the desired product ($57 \mathrm{mg}, 50.7 \%$ yield) as a white solid. LCMS: m/z $253(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(53.7 \mu \mathrm{~L}, 1.130 \mathrm{mmol})$ was added to a mixture of ethyl 6-formyl-2,4-dimethyl-4H-pyrrolo[2,3-d] thiazole-5-carboxylate (57 mg , 0.226 mmol) in 2-ethoxyethanol (2 mL). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 1 h , then poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: pentane/EtOAc $=5 / 1$) to give the desired product (49 mg , 98.4% yield) as a white solid. LCMS: m/z $221(\mathrm{M}+\mathrm{H})^{+}$.
t-BuOK ($50.8 \mathrm{mg}, 0.454 \mathrm{mmol}$) was added to a mixture of 2,4 dimethyl-4,6-dihydro-5H-thiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5one ($49 \mathrm{mg}, 0.223 \mathrm{mmol}$) in DMF (1 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 0.5 h , followed by addition of 1-(chloromethyl)-3-methoxybenzene $\quad(34.9 \mathrm{mg}$, 0.223 mmol). The resulting mixture was stirred at room temperature for 1 h , then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0^{\circ} \mathrm{C}$ and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: pentane/EtOAc $=3 / 1$) to give 8 mg of the desired product 6-(3-methoxybenzyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[$\left.5^{\prime}, 4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5-one. LCMS: $\mathrm{m} / \mathrm{z} 341(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.23$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.72(\mathrm{~m}, 3 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.

6-(3-hydroxybenzyl)-2,4-dimethyl-4H-thiazolo
 [5', $4^{\prime}: 4,5$]pyrrolo[2,3-d]pyridazin-5(6H)-one (11)

BBr_{3} ($195 \mathrm{mg}, 0.778 \mathrm{mmol}$) was added to a mixture of 6-(3-meth-oxybenzyl)-2,4-dimethyl-4H-thiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyrida-zin- $5(6 \mathrm{H})$-one ($53 \mathrm{mg}, 0.16 \mathrm{mmol}$) in DCM $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h and then quenched with MeOH . The resulting mixture was concentrated under reduced pressure. The residue was purified by prep-HPLC to give the desired product ($15.6 \mathrm{mg}, 30.7 \%$ yield) as a white solid. LCMS: m/z $327(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.34$ (s, 1H), $8.58(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.56(\mathrm{~m}, 3 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H})$, 4.278 (s, 3H), 2.86 (s, 3H).

Compounds 12 and 13 were made using a similar procedure as that used for making compound 11.

6-(4-hydroxybenzyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[5',4':4,5]pyrrolo[2,3-d]yridazine-5-one (12)

LCMS: $327(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\left.-\mathrm{d}_{6}\right)} \delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.53$ (s, 1H), 7.17 (d, J=8.4 Hz, 2H), $6.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H})$, 4.26 (s, 3H), 2.85 (s, 3H)

6-(2-hydroxybenzyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[5',4':4,5]pyrrolo[2,3-d]yridazine-5-one (13)

LCMS: m/z $327(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.67(\mathrm{~s}, 1 \mathrm{H})$, $8.59(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}$, 2H), 4.27 (s, 3H), 2.87 (s, 3H).

6-(4-(hydroxymethyl)benzyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[5',4':4,5]pyrrolo[2,3-d]yridazine-5-one (14)

$\mathrm{K}_{2} \mathrm{CO}_{3}$ ($181 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added to a mixture of 2,4-dimethyl-4Hthiazolo[$\left.5^{\prime}, 4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]yridazine-5(6H)-one ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$) in DMF (20 mL). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 min , followed by addition of methyl 4 -(bromomethyl)benzoate ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h , then poured into ice water and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EtOAc}=50 / 1$ to $10 / 1$) to give the desired product ($120 \mathrm{mg}, 74.61 \%$ yield) as a white solid. LCMS: m/z $369(\mathrm{M}+\mathrm{H})^{+}$.

LAH ($30 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added to a mixture of methyl 4-((2,4-dimethyl-5-oxo-4H-thiazolo[5', 4':4,5]pyrrolo[2,3-d]pyridazin-(5H)$\mathrm{yl})$ methyl)benzoate ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) in THF (20 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ under N_{2} for 30 min , and then quenched with $\mathrm{Na}_{2} \mathrm{SO}_{4}-10 \mathrm{H}_{2} \mathrm{O}$ and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by prepTLC to give the desired product ($3 \mathrm{mg}, 3.25 \%$ yield) as a white solid. LCMS: m/z $341(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}$, $1 \mathrm{H}), 7.37$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 4.66-$ 4.54 (m, 2H), 4.31 (s, 3H), 2.82 (d, J=10.3 Hz, 3H).

Compound 15 was made utilizing the above procedure, except with methyl 3-(bromomethyl)benzoate.
6-(3-(hydroxymethyl)benzyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5-one (15)

LCMS: m/z $341(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H})$, $7.44(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=$ $11.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H})$.

6-(3-aminobenzyl)-2,4-dimethyl-4H-thiazolo[5',4':4,5]pyrrolo [2,3-d]pyridazin-5(6H)-one (16)

1-(bromomethyl)-3-nitrobenzene ($194 \mathrm{mg}, \quad 0.9 \mathrm{mmol}$) and t-BuOK ($76 \mathrm{mg}, 0.68 \mathrm{mmol}$) were added to a mixture of 2,4 -dimethyl- 4 H -thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)-one (100 mg, 0.45 mmol) in DMF (5 mL). The resulting mixture was stirred at room temperature for 1 h , then poured into water and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by prep-TLC to give the desired product ($100 \mathrm{mg}, 62.5 \%$ yield). LCMS: m/z $356(\mathrm{M}+\mathrm{H})^{+}$.

Pd/C ($10 \%, 50 \mathrm{mg}$) was added to a mixture of 2,4-dimethyl-6-(3-nitrobenzyl)-4H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)-one $(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(10 \mathrm{~mL} / 10 \mathrm{~mL})$ under N_{2}. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ under H_{2} for 12 h and then filtered through Celite. The filtrate was concentrated under reduced pressure and the residue was purified by prep-TLC to obtain the desired compound ($80 \mathrm{mg}, 88 \%$ yield). LCMS: m/z $326(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $-\mathrm{d}_{6}$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, 1 \mathrm{H}), 6.57-6.32(\mathrm{~m}$, 3H), 5.19 (s, 2H), 5.04 (s, 2H), 4.26 (s, 3H), 2.85 (s, 3H).

Compound 17 was made utilizing the above procedure.

6-(4-aminobenzyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5-one (17)

LCMS: m/z $326(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H})$, 7.04 (d, 2H), 6.49 (d, 2H), 5.15 (s, 2H), 5.01 (s, 2H), 4.25 (s, 3H), 2.85 (s, 3H).

Compounds 18-21 and the 6-fluoropyridin-2-ylmethyl analog were all made using 2,4-dimethyl-4H-thiazolo[5', $\left.\mathbf{4}^{\prime}: 4,5\right]$ pyrrolo[2,3-d]-pyridazin- $5(6 \mathrm{H})$-one and corresponding benzylic halides in one step.

6-((1H-indazol-5-yl)methyl)-2,4-dimethyl-4,6-dihydro-5H-
thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5-one (18)

LCMS: m/z $351(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 13.02(\mathrm{~s}$, $1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, 1 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H})$, $5.44(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H})$.

6-((1H-indazol-6-yl)methyl)-2,4-dimethyl-4H-
thiazolo[5', 4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)-one (19)

LCMS: m/z $351(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.96(\mathrm{~s}$, 1H), 8.59 (s, 1H), 8.03 (s, 1H), 7.71 (d, 1H), 7.42 (s, 1H), 7.13 (d, 1H), $5.48(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H})$.

6-((1H-indazol-7-yl)methyl)-2,4-dimethyl-4H-
thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)-one (20)

LCMS: m/z $351(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 13.14(\mathrm{~s}$, $1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.11-6.92(\mathrm{~m}, 2 \mathrm{H})$, $5.68(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.

6-((1H-indazol-4-yl)methyl)-2,4-dimethyl-4,6-dihydro-5Hthiazolo[$5^{\prime}, 4^{\prime}: 4,5$]pyrrolo[2,3-d]pyridazin-5-one (21)

LCMS: m/z $351(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 13.11(\mathrm{~s}$, 1H), 8.58 (s, 1H), 8.15 (s, 1H), 7.45 (d, 1H), 7.33-7.22 (m, 1H), 6.96 (d, 1H), 5.66 (s, 2H), $4.26(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.

6-((6-fluoropyridin-2-yl)methyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[5', $4^{\prime}: 4,5$]pyrrolo[2,3-d]pyridazin-5-one was made using 2,4-dimethyl-4H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)-one and 2-(bromomethyl)-6-fluoropyridine in one step.

LCMS: $330(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H})$, 7.96-7.88 (m, 1H), 7.13 (dd, 1H), 7.07 (dd, 1H), 5.42 (s, 2H), 4.25 (s, $3 \mathrm{H}), 2.86$ ($\mathrm{s}, 3 \mathrm{H}$).

6-((6-aminopyridin-2-yl)methyl)-2,4-dimethyl-4,6-dihydro-5H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5-one (22)

A mixture of 6-((6-fluoropyridin-2-yl)methyl)-2,4-dimethyl-4Hthiazolo[5', $\left.4^{\prime}: 4,5\right]$-pyrrolo[2,3-d] pyridazin-5(6H)-one (40 mg , $0.12 \mathrm{mmol})$ and (2,4-dimethoxyphenyl)methanamine (102 mg , 0.6 mmol) in N-methyl-2-pyrrolidone (NMP) (1 mL) was stirred at $140^{\circ} \mathrm{C}$ until completion. The resulting mixture was concentrated under reduced pressure. The residue was purified by prep-TLC to obtain the desired product ($20 \mathrm{mg}, 34.5 \%$ yield). LCMS: 477 $(\mathrm{M}+\mathrm{H})^{+}$.
A mixture of 6-((6-((2,4-dimethoxybenzyl)amino)pyridin-2-yl)meth-yl)-2,4-dimethyl-4H-thiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5(6H)one ($20 \mathrm{mg}, 0.042 \mathrm{mmol}$) and TFA ($45 \mathrm{mg}, 0.42 \mathrm{mmol}$) in DCM $(1 \mathrm{~mL})$ was stirred at room temperature until completion. The resulting mixture was concentrated under reduced pressure. The residue was purified by prep-HPLC to obtain the desired product ($10 \mathrm{mg}, 73$ \% yield). LCMS: $327(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, 1 \mathrm{H}), 6.30(\mathrm{~d}, 1 \mathrm{H}), 6.09(\mathrm{~d}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H})$, $5.19(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.

2-ethyl-6-(3-methoxybenzyl)-4-methyl-4H-thiazolo [$5^{\prime}, 4^{\prime}: 4,5$]pyrrolo[2,3-d]pyridazin-5(6H)-one (23)

A mixture of 2-chlorothiazole-5-carbaldehyde ($5 \mathrm{~g}, 34 \mathrm{mmol}$) and ethyl 2-azidoacetate ($13.16 \mathrm{~g}, 102 \mathrm{mmol}$) in dry ethanol (25 mL) was added to a solution of $\mathrm{Na}(2.35 \mathrm{~g}, 102 \mathrm{mmol})$ in dry $\mathrm{EtOH}(25 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred at that temperature for 1 h , then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was concentrated under reduced pressure. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$) to give the desired product ($6.18 \mathrm{~g}, 65.9 \%$ yield) as a yellow oil. LCMS: m/z $277(\mathrm{M}+\mathrm{H})^{+}$.

Methanesulfonyl chloride ($3.46 \mathrm{~mL}, 44.7 \mathrm{mmol}$) was added dropwise to a mixture of ethyl 2-azido-3-(2-chlorothiazol-5-yl)-3hydroxypropanoate $(6.18 \mathrm{~g}, 22.39 \mathrm{mmol})$ in $\mathrm{DCM}(60 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. The mixture was stirred at that temperature for 5 min , followed by the addition of triethylamine ($21.8 \mathrm{~mL}, 156.7 \mathrm{mmol}$) at $-30^{\circ} \mathrm{C}$. The resulting mixture was stirred at that temperature for another 20 min and then diluted with DCM. The mixture was washed with aqueous $\mathrm{HCl}(0.6 \mathrm{M})$. The organic layer was separated and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$) to give the desired product ($5.5 \mathrm{~g}, 95 \%$ yield) as a yellow solid. LCMS: m/z $259(\mathrm{M}+\mathrm{H})^{+}$.

A mixture of (Z)-ethyl 2-azido-3-(2-chlorothiazol-5-yl)acrylate (5.5 g , 21.31 mmol) in xylene (60 mL) was heated to $140^{\circ} \mathrm{C}$ for 20 min and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: PE/ $\mathrm{EtOAc}=5 / 1$) to give the desired product ($4.5 \mathrm{~g}, 91 \%$ yield) as a yellow solid. LCMS: m/z $231(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{K}_{2} \mathrm{CO}_{3}(5.3 \mathrm{~g}, 39 \mathrm{mmol})$ was added to a mixture of ethyl 2-chloro-4H-pyrrolo[2,3-d]thiazole-5-carboxylate ($4.5 \mathrm{~g}, 19.56 \mathrm{mmol}$) in DMF $(30 \mathrm{~mL})$. The mixture was stirred at that temperature for 10 min , followed by dropwise addition of iodomethane ($2.43 \mathrm{~mL}, 39 \mathrm{mmol}$). The resulting mixture was stirred at $30^{\circ} \mathrm{C}$ for another 2 h , then cooled down, poured into water, and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel
(eluent: PE/EtOAc=5/1) to give the desired product (4.7 g, 98.7\% yield) as a yellow solid. LCMS: m/z $245(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{POCl}_{3}(22 \mathrm{~mL}, 0.24 \mathrm{~mol})$ was added dropwise to a mixture of 2-chloro-4-methyl-4H-pyrrolo[2,3-d]thiazole-5-carboxylate ($3 \mathrm{~g}, 12.3 \mathrm{mmol}$) in DMF (30 mL) in an ice-water bath. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ overnight, then cooled, poured into ice water, and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$) to give the desired product (1.8 g , 53.9% yield) as a yellow solid. LCMS: m/z $273(\mathrm{M}+\mathrm{H})^{+}$.

Hydrazine hydrate ($23 \mathrm{mg}, 0.73 \mathrm{mmol}, 98 \% \mathrm{w} / \mathrm{w}$) was added to a mixture of ethyl 2-chloro-6-formyl-4-methyl-4H-pyrrolo[2,3-d]thi-azole-5-carboxylate $(200 \mathrm{mg}, ~ 0.73 \mathrm{mmol})$ and $\mathrm{AcOH}(876 \mathrm{mg}$, 14.6 mmol) in ethanol (5 mL). The mixture was stirred at room temperature for 2 h , then poured into water and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: PE/EtOAc=2/1) to give the desired product ($60 \mathrm{mg}, 90 \%$ purity) as a yellow solid. LCMS: m/z $241(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{K}_{2} \mathrm{CO}_{3}$ ($103 \mathrm{mg}, 0.75 \mathrm{mmol}$) was added to a mixture of 2-chloro-4-methyl-4H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)-one ($60 \mathrm{mg}, 0.25 \mathrm{mmol}$) in DMF (5 mL). The mixture was stirred at that temperature for 10 min , followed by dropwise addition of 1-(chloromethyl)-3-methoxybenzene ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$). The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ overnight, then poured into water and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by prepTLC to give the desired product ($8 \mathrm{mg}, 10 \%$ yield) as a yellow solid. LCMS: m/z $361(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.65$ $(\mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 3 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.25$ (s, 3H), 3.72 (s, 3H).
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was added to a mixture of 2-chloro-6-(3-meth-oxybenzyl)-4-methyl-4H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin$5(6 \mathrm{H})$-one ($600 \mathrm{mg}, 1.67 \mathrm{mmol}$) and tributyl(vinyl)stannane (1 mL , 3.4 mmol) in DMF (6 mL). The mixture was stirred at $100^{\circ} \mathrm{C}$ overnight under N_{2}, then poured into water and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 2$) to give the desired product ($410 \mathrm{mg}, 68 \%$ yield) as a yellow solid. LCMS: m/z $353(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (dd, $J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.28(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.

Pd/C (10 mg) was added to a mixture of 6-(3-methoxybenzyl)-4-methyl-2-vinyl-4H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)one ($30 \mathrm{mg}, 0.88 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ and THF (1 mL) under N_{2}. The mixture was stirred under H_{2} at room temperature for 1 h , then filtered through Celite. The filtrate was concentrated under reduced pressure and the residue was purified by prep-TLC to obtain the desired product ($5 \mathrm{mg}, 16.7 \%$ yield) as a white solid. LCMS: m/z $355(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.56$ (s, $1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.78(\mathrm{~m}, 3 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

2-(4-fluorobenzyl)-6-(3-methoxybenzyl)-4-methyl-4Hthiazolo[5', 4':4,5]pyrrolo[2,3-d] pyridazin-5(6H)-one (25)

1,2,3,4,5-pentafluoro-6-iodobenzene ($3.6 \mathrm{~g}, 12 \mathrm{mmol}$) was added to a stirred mixture of 6-(3-methoxybenzyl)-4-methyl-4,6-dihydro-5H-thiazolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-5-one ($1 \mathrm{~g}, 3 \mathrm{mmol}$) and tBuOK ($688 \mathrm{mg}, 6 \mathrm{mmol}$) in toluene $(30 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at $135^{\circ} \mathrm{C}$ for 4 h (oil bath was preheated) and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EtOAc}=6 / 1$) to obtain the desired product ($1 \mathrm{~g}, 72 \%$ yield). LCMS: $m / z=453(M+H)^{+} .{ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $8.61(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, 1 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 3 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 3 \mathrm{H})$, 3.71 (s, 3H).

Zn powder ($1300 \mathrm{mg}, 20 \mathrm{mmol}$) was added to a 25 mL , threenecked, round-bottom flask. The mixture was degassed under high vacuum and back-purged with N_{2} three times. Dry THF (15 mL), trimethylsilyl chloride ($108 \mathrm{mg}, 1 \mathrm{mmol}$), and 1,2-dibromoethane $(186 \mathrm{mg}, 1 \mathrm{mmol})$ were added via syringe at room temperature. The suspension was heated to $65^{\circ} \mathrm{C}$ for 30 min , then cooled to $0^{\circ} \mathrm{C}$, followed by dropwise addition of 1-(bromomethyl)-4-fluorobenzene $(1.89 \mathrm{~g}, 10 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 1.5 h . The supernatant solution was directly used for the next step.

2-iodo-6-(3-methoxybenzyl)-4-methyl-4H-thiazo-
lo[$5^{\prime}, 4^{\prime}: 4,5$]pyrrolo[2,3-d]pyridazin-5(6H)-one ($100 \mathrm{mg}, \quad 0.22 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25.4 \mathrm{mg}, 10 \mathrm{~mol} \%)$ were added to a 25 mL , threenecked, round-bottom flask. The flask was degassed under high vacuum and back-purged with N_{2} three times. The supernatant solution of (4-fluorobenzyl)zinc(II) bromide (6 mL) was added via syringe to the flask. The resulting mixture was stirred under N_{2} at $65^{\circ} \mathrm{C}$ for 0.5 h , then concentrated under reduced pressure. The residue was purified by prep-TLC to give the desired product (6 mg , 6% yield). LCMS: $m / z=435(M+H)^{+} .{ }^{1} H$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $8.53(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 3 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H})$, 5.31 (s, 2H), 4.52 (s, 2H), 4.26 (s, 3H), 3.71 (s, 3H).

The procedure above was used to produce compounds 24 and 26 using the appropriate starting materials.
2-(cyclohexylmethyl)-6-(3-methoxybenzyl)-4-methyl-4H-thiazolo[$\left.5^{\prime}, 4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5(6H)-one (24) was synthesized similarly using Negishi coupling with (bromomethyl)cyclohexane.

LCMS: m/z $423(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 3 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.00(\mathrm{~m}$, 6 H).

2-((1H-pyrazol-3-yl)methyl)-6-(3-methoxybenzyl)-4-methyl-4,6-di-hydro-5H-thiazolo[$\left.5^{\prime}, 4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5-one (26) was synthesized similarly using Negishi coupling with tert-butyl 3-(bromomethyl)-1H-pyrazole-1-carboxylate.

LCMS: m/z $407(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 12.79(\mathrm{~s}$, $1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.23$ (dd, 1H), 6.84-6.74 (m, $2 \mathrm{H}), 6.26(\mathrm{~d}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.

2-((1H-pyrazol-3-yl)methyl)-6-((6-aminopyridin-2-yl)methyl)-4-methyl-4H-thiazolo[5', 4':4,5]pyrrolo[2,3-d]pyridazin-5(6H)-one (27)

NaSMe ($240 \mathrm{mg}, 3.5 \mathrm{mmol}$) was added to a mixture of ethyl 2-bromo-4-methyl-4H-pyrrolo[2,3-d]thiazole-5-carboxylate (500 mg , 1.73 mmol) in EtOH (10.0 mL). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h , then quenched with ice water and extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to obtain the desired product (460 mg), which was directly used in the next step without any purification. LCMS: m/z $257(\mathrm{M}+\mathrm{H})^{+}$.
POCl_{3} ($550 \mathrm{mg}, 3.6 \mathrm{mmol}$) was added to a solution of ethyl 4-methyl-2-(methylthio)-4H-pyrrolo[2,3-d]thiazole-5-carboxylate
($460 \mathrm{mg}, 1.8 \mathrm{mmol}$) and N -methyl-N-phenylformamide $(490 \mathrm{mg}$, $3.6 \mathrm{mmol})$ in 1,2 -dichloroethane (DCE) $(10 \mathrm{~mL})$. The resulting mixture was stirred at $130^{\circ} \mathrm{C}$ for 3 h , then quenched with ice water and extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EtOAc}=8 / 1$) to give the desired product ($320 \mathrm{mg}, 63 \%$ yield). LCMS: m/z $285(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}, 98 \%$ weight [wt]) was added to a solution of ethyl 6-formyl-4-methyl-2-(methylthio)-4H-pyrrolo[2,3-d]thiazole-5-carboxylate ($300 \mathrm{mg}, 1.06 \mathrm{mmol}$) in $\mathrm{EtOH}(5.0 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 1 h , then heated to $60^{\circ} \mathrm{C}$ overnight and subsequently cooled down. The solid was collected by filtration and dried under high vacuum to obtain the desired product ($180 \mathrm{mg}, 67 \%$ yield). LCMS: m/z $253(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.61$ (s, 1H), 8.48 ($\left.s, 1 \mathrm{H}\right), 4.22(\mathrm{~s}, 3 \mathrm{H})$, 2.81 ($\mathrm{s}, 3 \mathrm{H}$).

Meta-chloroperoxybenzoic acid (m-CPBA) ($61.5 \mathrm{~g}, 3 \mathrm{eq}$) was added to a three-necked flask containing 4-methyl-2-(meth-ylthio)-4,6-dihydro-5H-thiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5one ($30 \mathrm{~g}, 0.119 \mathrm{~mol}, 1.0 \mathrm{eq}$) in DCM (600 mL) at $20^{\circ} \mathrm{C}$ in three portions. The mixture was stirred at $30^{\circ} \mathrm{C}$ overnight; LCMS indicated 100% consumption of starting material, forming 20% sulfoxide and 80% sulfone. The mixture was cooled to room temperature and another portion of m-CPBA (1.0 eq) was added. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 2 h ; LCMS indicated sulfoxide (LCMS: m/z $269(\mathrm{M}+\mathrm{H})^{+}$) <8\%. The mixture was cooled to room temperature and filtered. The filtered cake was suspended in MeOH (500 mL) and stirred at room temperature for 1 h . Solid was collected by filtration, washed with EtOAc, and dried in a vacuum to afford 28 g of a mixture of 5% sulfoxide and 95% sulfone. The mixture was suspended in DMSO (600 mL), heated to approximately $120-130^{\circ} \mathrm{C}$ to form a clear solution, and cooled to room temperature, leading to formation of a solid precipitate. The mixture was filtered and dried to provide 23 g of pure 4-methyl-2-(methylsulfonyl)-4,6-dihydro-5Hthiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-5-one, LCMS: m/z 285 $(\mathrm{M}+\mathrm{H})^{+} .1 \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 12.87(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H})$, $4.32(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H})$.

At $0^{\circ} \mathrm{C}$ under N_{2} atmosphere, $\mathrm{NaH}(20.7 \mathrm{~g}, 0.864 \mathrm{~mol}, 60 \%$) was added to a stirred solution of methyl 1 H -pyrazole-3-carboxylate ($90 \mathrm{~g}, 0.72 \mathrm{~mol}$) in THF (1 L). The resulting mixture was slowly warmed to room temperature and stirred for 1 h . The reaction mixture was then cooled back to $0^{\circ} \mathrm{C}$ and SEMCI $(152 \mathrm{~mL}$, $0.842 \mathrm{~mol})$ was added dropwise. Stirring continued for another 2 h , when the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (3x). The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under vacuum to provide 210 g of crude product, which was used in the next step without purification.

At $0^{\circ} \mathrm{C}$ under an N_{2} atmosphere, the crude methyl 1-((2-(trimeth-ylsilyl)ethoxy)methyl)-1H-pyrazole-3-carboxylate (76 g) was added to the suspension of LAH ($16.9 \mathrm{~g}, 0.44 \mathrm{~mol}$) in THF (760 mL). The resulting mixture was slowly warmed to room temperature and stirred for 1 h . The reaction mixture was cooled back to $0^{\circ} \mathrm{C}$, and $\mathrm{H}_{2} \mathrm{O}(15.6 \mathrm{~mL}), 10 \% \mathrm{NaOH}(15.6 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(15.6 \mathrm{~mL})$ were added in succession. The resulting mixture was filtered through a pad of Celite and washed with methyl tert-butyl ether (MTBE) ($4 \times$). The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure to provide crude product (69.4 g), which was used in the next step without purification. LCMS: m/z $229(\mathrm{M}+\mathrm{H})^{+}$.

At $0^{\circ} \mathrm{C}$ under an N_{2} atmosphere, triethylamine (TEA) (55.4 mL , $0.393 \mathrm{~mol})$ followed by $\mathrm{MsCl}(24.0 \mathrm{~mL}, 0.314 \mathrm{~mol})$ was added to a stirred solution of (1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3$\mathrm{yl})$ methanol (61.5 g , theoretically 0.262 mol) in THF (310 mL). The reaction was warmed to room temperature and stirred for 1 h before the introduction of $\mathrm{Nal}(196.5 \mathrm{~g}, 1.31 \mathrm{~mol}$, in 310 mL DMF). The resulting mixture was stirred for 1 h , quenched with ice water, and extracted with MTBE (3x). The combined organic layers were washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to provide 77.5 g crude product used in the next step without purification. LCMS: m/z $339(\mathrm{M}+\mathrm{H})^{+}$.

At $0^{\circ} \mathrm{C}$ under an N_{2} atmosphere, sodium benzenesulfinate (53.5 g , $0.32 \mathrm{~mol})$ was added to a stirred solution of 3-(iodomethyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (77.5 g , theoretically $0.229 \mathrm{~mol})$ in DMF $(600 \mathrm{~mL})$ and then was stirred for 1 h at $0^{\circ} \mathrm{C}$. After warming to room temperature, the reaction mixture was quenched with ice water and saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and then extracted with EtOAc $(3 \times)$. The combined organic layers were washed with saturated NaHCO_{3} and then with brine successively and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under vacuum, and the residue was purified by flash chromatography (silica gel, $20 \% \sim 70 \%$ EtOAc in petroleum ether) to provide 56.7 g product 3-((phenylsulfonyl)methyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1Hpyrazole as a light-yellow oil. LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$353. 1H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.85-7.77$ (m, 4H), 7.62 (dd, 2H), 6.19 (d, 1H), $5.35(\mathrm{~d}, 2 \mathrm{H}), 4.70(\mathrm{~d}, 2 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.77(\mathrm{~m}, 2 \mathrm{H})$, -0.01 (s, 9H).

A mixture of 4-methyl-2-(methylsulfonyl)-4H-thiazolo[5', 4':4,5]-pyrrolo[2,3-d]pyridazin-5(6H)-one ($7.5 \mathrm{~g}, 26.4 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($8.3 \mathrm{~g}, 39.3 \mathrm{mmol}$) in anhydrous $\mathrm{MeCN}(300 \mathrm{~mL}$) was stirred at $70^{\circ} \mathrm{C}$ for 1 h under N_{2}. A solution of tert-butyl (6-(bromometh-yl)pyridin-2-yl)(tert-butoxycarbonyl)carbamate ($11.2 \mathrm{~g}, 29.0 \mathrm{mmol}$) in $\mathrm{MeCN}(30 \mathrm{~mL})$ was then added. After stirring at $70^{\circ} \mathrm{C}$ for 2.5 h under N_{2}, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($300 \mathrm{~mL} \times 3$). The combined organic layers were washed with water and then brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the organic phase was concentrated. The crude product was purified by flash chromatography (silica gel, $0-$ 50% ethyl acetate in petroleum ether) to give tert-butyl (tert-butoxycarbonyl)(6-((4-methyl-2-(methylsulfonyl)-5-oxo-4,5-dihy-dro-6H-thiazolo[5', 4':4,5]pyrrolo[2,3-d]pyridazin-6-yl)methyl)-pyridin-2-yl)carbamate ($5.5 \mathrm{~g}, 32 \%$ yield). LCMS (ESI) found: 591.1 $(\mathrm{M}+\mathrm{H})^{+}$.

LiHMDS ($50.0 \mathrm{~mL}, 1 \mathrm{M}$ in THF) at $-40^{\circ} \mathrm{C}$ under argon was added to a stirred mixture of 3-((phenylsulfonyl)methyl)-1-((2-(trimeth-ylsilyl)ethoxy)methyl)-1H-pyrazole ($11.9 \mathrm{~g}, 33.8 \mathrm{mmol}$) in anhydrous THF (200 mL). After 10 min , the mixture was warmed to $10^{\circ} \mathrm{C}$ and stirred for 1 h , then tert-butyl (tert-butoxycarbonyl)(6-((4-methyl-2-(methylsulfonyl)-5-oxo-4,5-dihydro-6H-thiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-6-yl)methyl)pyridin-2-yl)carbamate ($9.1 \mathrm{~g}, 15.4 \mathrm{mmol}$ in 35 mL THF) was added. The reaction was stirred at $10^{\circ} \mathrm{C}$ for another 30 min . The reaction mixture was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($200 \mathrm{~mL} \times 3$). The combined organic layers were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash chromatography (silica gel, $0-50 \%$ ethyl acetate in petroleum ether) to give tert-butyl (6-((4-methyl-5-oxo-2-((phenylsulfonyl)(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3-yl)methyl)-4H-thi-azolo[5',4':4,5]pyrrolo[2,3-d]pyridazin-6(5H)-yl)methyl)pyridin-2yl)carbamate ($6.6 \mathrm{~g}, 56 \%$ yield). LCMS (ESI) found: $763.2(\mathrm{M}+\mathrm{H})^{+}$.

A solution of tert-butyl (6-((4-methyl-5-oxo-2-((phenylsulfonyl)(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3-yl)methyl)-4H-thiazolo[5', 4':4,5]pyrrolo[2,3-d]pyridazin-6(5H)-yl)methyl)pyridin-2$\mathrm{yl})$ carbamate ($6.0 \mathrm{~g}, 7.86 \mathrm{mmol}$) in EtOH/AcOH ($35 \mathrm{~mL} / 50 \mathrm{~mL}$) was
heated to $50^{\circ} \mathrm{C}$ and vigorously stirred in the presence of Zn $(2.55 \mathrm{~g}, 117.9 \mathrm{mmol})$ for 40 min . Additional Zn was added every $40 \mathrm{~min}(2.55 \mathrm{~g}$, twice, with monitoring by TLC/LCMS to avoid byproduct and over-reduced product). The solution was filtered and the filter cake was washed with DCM. The filtrate was partly evaporated, neutralized with saturated NaHCO_{3} solution, dried over MgSO_{4}, and the solvent was removed under vacuum. The crude product was purified by flash chromatography (silica gel, DCM: $\mathrm{MeOH}=40: 1$) to give tert-butyl (6-((4-methyl-5-oxo-2-((1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-3-yl)methyl)-4,5-dihy-dro-6H-thiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-6-yl)methyl)-pyridin-2-yl)carbamate ($3.1 \mathrm{~g}, 63$ \% yield). LCMS (ESI) found: 623.3 $(\mathrm{M}+\mathrm{H})^{+}$.
$\mathrm{HCl}(30 \mathrm{~mL}, 4 \mathrm{M}$ in dioxane) was added to a mixture of tert-butyl (6-((4-methyl-5-oxo-2-((1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyr-azol-3-yl)methyl)-4,5-dihydro-6H-thiazolo[5', $\left.4^{\prime}: 4,5\right]$ pyrrolo[2,3-d]pyridazin-6-yl)methyl)pyridin-2-yl)carbamate ($3.0 \mathrm{~g}, 4.8 \mathrm{mmol}$) in ethanol $(30 \mathrm{~mL})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was cooled to room temperature, filtered, and the solid was collected, suspended in water, and neutralized with aqueous NaHCO_{3} at $10^{\circ} \mathrm{C}$. The reaction mixture was filtered to give the desired compound $2-((1 \mathrm{H}-$ pyrazol-3-yl)methyl)-6-((6-aminopyridin-2-yl)methyl)-4-methyl-4H-thiazolo[5', $4^{\prime}: 4,5$]pyrrolo[2,3-d]pyridazin-5(6H)-one ($1.5 \mathrm{~g}, 78 \%$ yield). LCMS (ESI) found: $393.2(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $12.78(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}), 6.33-6.24(\mathrm{~m}$, $2 \mathrm{H}), 6.08(\mathrm{~d}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 3 \mathrm{H})$.

Other Contributions

We thank the following non-authors for their valuable contributions to the study:
i. Sebastien Ronseaux, s.ronseaux@mac.com (contributionsdesign of the drug metabolism and pharmacokinetics [DMPK] experiments, collection of DMPK data, and writeup of DMPK results)
ii. Giovanni Cianchetta, gcianchetta@recludix.com (contribu-tion-computational chemistry support, helped use the structures to design new compounds including AG-946 together with Tao Liu, co-inventor on patents describing the compounds)
iii. Penelope A. Kosiniski, pakosins@yahoo.com (contributiondeveloped the cellular assays, analyzed data, and helped with early draft)
iv. Zhihua Sui, zsui@proteovant.com (contribution-intellectual contribution to the project strategy and compound designs, co-inventor on patents describing the compounds)
v. Stefan Gross, Stefan.GROSS@servier.com (contribution-intellectual contribution to the assay design and compound selection)
vi. Zhijia of Biortus, zhijia.Iv@wuxibiortus.com (contributionCRO scientist for X-ray crystallography support)
vii. Huachun Tang at CP, hchtang@chempartner.com (contri-bution-CRO scientist for biochemical assay support)
viii. Fei Teng at CP, fteng1@chempartner.com (CRO scientist for biochemical assay support)
ix. Scott A. Biller, scottabiller@gmail.com (contribution-intellectual contribution to the drugging strategy, compound selection, and progression).
x. Kris Depew, Kris.Depew@agios.com (contribution—writeup of chemistry sections, revision, and editing of the manuscript).

Supporting Information

The Supporting Information is available free of charge online. Supplemental data include one table and three figures.

Author Contributions

T.L., A.K.P., and E.T.J. participated in the conceptualization of research goals; development or design of methodology; provision of resources; supervision and administration of the research; conduct of the investigation; data curation; validation and formal analysis of data; and visualization, writing, and reviewing of the manuscript. L.J. participated in the development or design of methodology; supervision and administration of the research; conduct of the investigation; data curation; validation and formal analysis of data; and visualization, writing, and reviewing of the manuscript. D.H. participated in the visualization, writing, and reviewing of the manuscript. C.K. participated in the conceptualization of research goals; supervision of the research; and writing and reviewing of the manuscript. L.D. participated in the conceptualization of research goals; supervision and administration of the research; and writing and reviewing of the manuscript.

Acknowledgements

This study was funded by Agios Pharmaceuticals, Inc.

Conflict of Interests

T.L. was an employee of Agios Pharmaceuticals, Inc. at time of research; is named as a co-inventor on related patents, including those associated with AG-946; and reports holding stock in Agios Pharmaceuticals, Inc. A.K.P. was an employee of Agios Pharmaceuticals, Inc. at time of research; is presently an employee of Atavistik Bio, a privately held biotechnology company; is named as a co-inventor on related patents, including those associated with AG-946; and reports holding stock in Agios Pharmaceuticals, Inc. E.T.J. was an employee of Agios Pharmaceuticals, Inc. at time of research; is presently an employee of Novartis; and reports holding stock in both Agios Pharmaceuticals, Inc. and Novartis. L.J. was a consultant for Agios Pharmaceuticals, Inc. at time of research and reports no other conflicts of interest. D.H. is a full-time employee and stockholder of Agios Pharmaceuticals, Inc. C.K. was an employee of Agios Pharmaceuticals, Inc. at time of research; is named as a
co-inventor on related patents, including those associated with AG-946; and reports holding stock in Agios Pharmaceuticals, Inc. L.D. is an independent consultant for Agios Pharmaceuticals, Inc.; is named as a co-inventor on related patents, including those associated with AG-946; and reports no other conflicts of interest.

Data Availability Statement

Qualified researchers may request access to related clinical study documents. Please send your data sharing requests to datasharing@agios.com. The following considerations will be taken into account as part of the review:

1. Ability for external researcher to re-identify trial participants such as small rare disease trials or single-center trials.
2. Language used in data and requested documents (e.g., English or other).
3. Informed consent language with respect to allowance for data sharing.
4. Plan to re-evaluate safety or efficacy data summarized in the approved product labeling.
5. Potential conflict of interest or competitive risk

Keywords: AG-946 • allosterism • medicinal chemistry pharmacokinetics • pyruvate kinase activator
[1] R. van Wijk, W. van Solinge, Blood 2005, 106, 4034-4042.
[2] F. A. Oski, H. Bowman, Br. J. Haematol. 1969, 17, 289-297.
[3] M. A. E. Rab, J. Bos, B. A. van Oirschot, S. van Straaten, P. A. Kosinski, V. Chubukov, H. Kim, H. Mangus, R. E. G. Schutgens, G. Pasterkamp, L. Dang, C. Kung, E. J. van Beers, R. van Wijk, Blood 2021, 137, 2997-3001.
[4] U. Platzbecker, L. C. Hofbauer, G. Ehninger, K. Hölig, Leuk. Res. 2012, 36, 525-536.
[5] a) P. Boivin, C. Galand, M. Audollent, Pathol. Biol. (Paris) 1970, 18, 175187; b) A. Kahn, J. Marie, J. F. Bernard, D. Cottreau, P. Boivin, Clin. Chim. Acta. 1976, 71, 379-387.
[6] a) B. Fattizzo, C. Vercellati, A. Marcello, M. Bortolotti, A. Zaninoni, E. Fermo, P. Bianchi, W. Barcellini, Blood 2022, 140, 4016-4017; b) B. Fattizzo, C. Vercellati, A. Marcello, P. Patel, M. Wind-Rotolo, L. Pettine, S. Leoni, E. Fermo, P. Bianchi, A. Zaninoni, W. Barcellini, in European Hematology Association Frankfurt, Germany, 2023.
[7] a) K. H. M. Kuo, D. M. Layton, A. Lal, H. Al-Samkari, P. A. Kosinski, B. Tong, J. H. Estepp, K. Uhlig, E. P. Vichinsky, Blood 2022, 140, 2479-2480; b) K. H. M. Kuo, D. M. Layton, A. Lal, H. Al-Samkari, J. Bhatia, P. A. Kosinski, B. Tong, M. Lynch, K. Uhlig, E. P. Vichinsky, Lancet 2022, 400, 493-501.
[8] W. A. Eaton, H. F. Bunn, Blood 2017, 129, 2719-2726.
[9] Z. B. Rose, Biochem. Biophys. Res. Commun. 1976, 73, 1011-1017.
[10] a) X. Dai Gurov, E. Merica, V. Iyer, A. Claeys, S. Patil, R. Urbstonaitis, J. Xiao, M.U. Callaghan, Blood 2022, 140, 5426-5427; b) J. de Wilde, T. Ruiter, B. A. van Oirschot, J. Jans, L. Dang, M. Wind-Rotolo, W. W. van Solinge, A. van Rhenen, R. van Wijk, M. Rab, in European Hematology Association, Frankfurt, Germany, 2023; c) H. Yang, E. Merica, Y. Chen, M. Cohen, R. Goldwater, P. A. Kosinski, C. Kung, Z. J. Yuan, L. Silverman, M. Goldwasser, B. A. Silver, S. Agresta, A. J. Barbier, Clin. Pharmacol. Drug Dev. 2019, 8, 246-259.
[11] a) R. van Zwieten, B. A. van Oirschot, M. Veldthuis, J. G. Dobbe, G. J. Streekstra, W. W. van Solinge, R. E. Schutgens, R. van Wijk, Am. J. Hematol. 2015, 90, e35-e39; b) N. Alli, M. Coetzee, V. Louw, B. van Rensburg, G. Rossouw, L. Thompson, S. Pissard, S. L. Thein, Hematology 2008, 13, 369-372.
[12] J. K. Jiang, M. B. Boxer, M. G. Vander Heiden, M. Shen, A. P. Skoumbourdis, N. Southall, H. Veith, W. Leister, C. P. Austin, H. W. Park, J. Inglese,
L. C. Cantley, D. S. Auld, C. J. Thomas, Bioorg. Med. Chem. Lett. 2010, 20, 3387-3393.
[13] D. Gramec, L. Peterlin Masic, M. Sollner Dolenc, Chem. Res. Toxicol. 2014, 27, 1344-1358.
[14] P. R. Lazzara, T. W. Moore, RSC Med. Chem. 2020, 11, 18-29.
[15] G. Scapin, S. B. Patel, C. Chung, J. P. Varnerin, S. D. Edmondson, A. Mastracchio, E. R. Parmee, S. B. Singh, J. W. Becker, L. H. van der Ploeg, M. R. Tota, Biochemistry 2004, 43, 6091-6100.
[16] A. F. Stepan, D. P. Walker, J. Bauman, D. A. Price, T. A. Baillie, A. S. Kalgutkar, M. D. Aleo, Chem. Res. Toxicol. 2011, 24, 1345-1410.
[17] a) L. M. Lima, E. J. Barreiro, Curr. Med. Chem. 2005, 12, 23-49; b) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591.
[18] a) P. Bhutani, G. Joshi, N. Raja, N. Bachhav, P. K. Rajanna, H. Bhutani, A. T. Paul, R. Kumar, J. Med. Chem. 2021, 64, 2339-2381; b) M. Marinescu, Int. J. Pharm. Bio. Sci. 2017, 8, 338-355.
[19] C. Kung, J. Hixon, P. A. Kosinski, G. Cianchetta, G. Histen, Y. Chen, C. Hill, S. Gross, Y. Si, K. Johnson, B. DeLaBarre, Z. Luo, Z. Gu, G. Yao, H. Tang, C. Fang, Y. Xu, X. Lv, S. Biller, S. M. Su, H. Yang, J. Popovici-Muller, F. Salituro, L. Silverman, L. Dang, Blood 2017, 130, 1347-1356.
[20] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326.
[21] A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, J. Appl. Crystallogr. 2007, 40, 658-674.
[22] A. W. Schuttelkopf, D. M. van Aalten, Acta Crystallogr. Sect. D 2004, 60, 1355-1363.
[23] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta Crystallogr. Sect. D 2010, 66, 486-501.
[24] P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, Acta Crystallogr. Sect. D 2010, 66, 213-221.

[^0]Version of record online: February 2, 2024

[^0]: Manuscript received: October 17, 2023
 Revised manuscript received: December 14, 2023
 Accepted manuscript online: December 18, 2023

