Effects of AG-348, a pyruvate kinase activator, in patients with pyruvate kinase deficiency: Updated results from the DRIVE PK study

Rachael F Grace, D Mark Layton, Frédéric Galacteros, Christian Rose, Wilma Barcellini, D Holmes Morton, Eduard van Beers, Hassan Yaish, Yaddanapudi Ravindranath, Kevin HM Kuo, Sujit Sheth, Janet L Kwiatkowski, Bruce Silver, Charles Kunz, Varsha Iyer, Hua Yang, Penelope A Kosinski, Lei Hua, Ann Barbier, Bertil Gladen

Dana-Farber Boston Children’s Cancer and Blood Disorders Center; Boston, MA, USA; 1.Hammersmith Hospital, Imperial College Healthcare NHS Trust; London, UK; 2.Université des Montagnes, Cemagref; Géobiologie et Entomologie, Créteil, France; 3.Hopital Saint Vincent de Paul, Lille, France; 4.Cliniques universitaires de Bruxelles; Université libre de Bruxelles, Brussels, Belgium; 5.University of Central Florida, Orlando, FL, USA; 6.Lahey Clinic Medical Center, Burlington, MA, USA; 7.University of Cincinnati, Cincinnati, OH, USA; 8.Ryerson University, Toronto, ON, Canada; 9.Kosair Children’s Hospital, Louisville, KY, USA; 10.University of Kentucky, Lexington, KY, USA; 11.University of Illinois, Chicago, IL, USA; 12.University of Minnesota, Minneapolis, MN, USA; 13.University of Pittsburgh, Pittsburgh, PA, USA; 14.Broad Institute (Cambridge, MA, USA); 15.Stanford University Medical School, Palo Alto, CA, USA;

BACKGROUND

- Pyruvate kinase (PK) deficiency is an under-recognized hereditary disease caused by mutations in the PKLR gene, which results in blinding hereditary anemia.
- Acute and chronic complications of supportive care (e.g., transfusions, splenectomy, or chelation) may additionally burden patients with PK deficiency.

OBJECTIVE

- To report updated data from the ongoing DRIVE PK study (ClinicalTrials.gov NCT02476916). An open-label, dose-ranging trial of AG-348 in adults with PK deficiency who are not receiving regular blood transfusions.

METHODS

- Open-label, global, phase 2 study: 16 centers in the US, Canada, and EU.
- PK-deficient adults who are not regularly transfused (ClinicalTrials.gov NCT02476916).

RESULTS

Table 1. Demographic characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>50 mg BID (n=26)</th>
<th>300 mg BID (n=26)</th>
<th>50 mg BID (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males, n (%)</td>
<td>19 (73.1)</td>
<td>14 (53.8)</td>
<td>9 (60.0)</td>
</tr>
<tr>
<td>Age at randomization, median (range), years</td>
<td>26 (18–68)</td>
<td>30 (21–41)</td>
<td>26 (18–40)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td>27 (100.0)</td>
<td>27 (100.0)</td>
<td>11 (73.3)</td>
</tr>
<tr>
<td>Hb baseline, median (range), g/dL</td>
<td>9.0 (5.9–12.2)</td>
<td>8.6 (5.5–12.0)</td>
<td>8.9 (5.5–12.3)</td>
</tr>
<tr>
<td>Spinal cord, n (%)</td>
<td>2 (7.7)</td>
<td>2 (7.4)</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>Hb change, median (range), g/dL</td>
<td>3.4 (1.1–5.8)</td>
<td>3.2 (0.4–7.8)</td>
<td>1.1 (0.0–3.1)</td>
</tr>
</tbody>
</table>

Table 2. Most common AEs regardless of causality or grade (occurring in >15% of patients)

<table>
<thead>
<tr>
<th>AE</th>
<th>Grade 1 (n=26)</th>
<th>Grade 2 (n=26)</th>
<th>Grade 3 (n=26)</th>
<th>Grade 4 (n=26)</th>
<th>Total (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>15 (57.7)</td>
<td>10 (38.5)</td>
<td>2 (7.7)</td>
<td>0</td>
<td>29 (100.0)</td>
</tr>
<tr>
<td>Insomnia</td>
<td>6 (22.2)</td>
<td>2 (7.7)</td>
<td>0</td>
<td>0</td>
<td>8 (30.8)</td>
</tr>
<tr>
<td>Nausea</td>
<td>15 (57.7)</td>
<td>10 (38.5)</td>
<td>2 (7.7)</td>
<td>0</td>
<td>27 (100.0)</td>
</tr>
<tr>
<td>Cough</td>
<td>4 (15.4)</td>
<td>4 (15.4)</td>
<td>0</td>
<td>0</td>
<td>8 (30.8)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4 (15.4)</td>
<td>4 (15.4)</td>
<td>0</td>
<td>0</td>
<td>8 (30.8)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>4 (15.4)</td>
<td>4 (15.4)</td>
<td>0</td>
<td>0</td>
<td>8 (30.8)</td>
</tr>
<tr>
<td>Influenza</td>
<td>7 (26.9)</td>
<td>7 (26.9)</td>
<td>0</td>
<td>0</td>
<td>14 (53.8)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3 (11.1)</td>
<td>3 (11.1)</td>
<td>0</td>
<td>0</td>
<td>6 (23.1)</td>
</tr>
</tbody>
</table>

Effect of AG-348 on sex hormones

- Moderately elevated hormone changes from baseline in sex hormone levels were observed in males at planned protocol trial dose levels (50 mg BID).
- Data are consistent with mild aromatase inhibition.
- Mean sex hormone values remained within normal limits in females (data not shown).
- Interpretation is confounded by variability in menopausal status and contraceptive use.

CONCLUSIONS

- AG-348 is a novel, first-in-class, PK-R activator in clinical testing as a potential disease-altering therapy for patients with PK deficiency.
- Chronic daily dosing with AG-348 is well tolerated.
- There were 14 serious AEs in 11 patients.
- The mean maximum increase was 3.4 g/dL (range 1.1–5.8 g/dL).
- Most sex hormone values remained within normal limits in females (data not shown).
- Data are consistent with mild aromatase inhibition.
- Ongoing follow-up will continue to assess the clinical impact of mild aromatase inhibition.
- The mean maximum increase was 3.4 g/dL (range 1.1–5.8 g/dL).
- Patients were monitored for a median duration of 37.5 weeks.

Figure 1. Study design

- Enrollment is complete as of November 2016.
- Date cutoff: July 14, 2017.
- Primary safety and efficacy Secondary endpoint: Pharmacokinetics of AG-348: PK interactions, PK-R interactions, indication of clinical safety, pharmacodynamic and other pharmacological parameters.

Figure 2. Patient disposition

- Patients experiencing ≥1 AE, n (%)
- AE: adverse event.

Figure 3. Sex hormone values over time in males

- The mean maximum change was 3.4 g/dL (range 1.1–5.8 g/dL).
- Most sex hormone values remained within normal limits in females (data not shown).
- Data are consistent with mild aromatase inhibition.

Figure 4. Maximum Hb increase observed during the Core period

- The mean maximum increase was 3.4 g/dL (range 1.1–5.8 g/dL).
- Patients were monitored for a median duration of 37.5 weeks.

Figure 5. Maximum Hb increase observed by genotype

- The mean maximum increase was 3.4 g/dL (range 1.1–5.8 g/dL).
- Patients were monitored for a median duration of 37.5 weeks.

Figure 6. Majority of Hb increases are rapid and sustained

- The mean maximum increase was 3.4 g/dL (range 1.1–5.8 g/dL).
- Patients were monitored for a median duration of 37.5 weeks.

Acknowledgments

DISCLOSURES

- AG-348 is a novel, first-in-class, PK-R activator in clinical testing as a potential disease-altering therapy for patients with PK deficiency.
- Chronic daily dosing with AG-348 is well tolerated.
- There were 14 serious AEs in 11 patients.
- The mean maximum increase was 3.4 g/dL (range 1.1–5.8 g/dL).
- Most sex hormone values remained within normal limits in females (data not shown).
- Data are consistent with mild aromatase inhibition.
- Ongoing follow-up will continue to assess the clinical impact of mild aromatase inhibition.

References

- Optimized AG-348 dose
- Primary efficacy endpoint: Proportion of patients who achieve ≥1.5 g/dL increase in Hb from baseline at the end of the treatment period.

Presentation at the 59th American Society of Hematology (ASH) Annual Meeting, December 9–12, 2017, Atlanta, GA, USA