Effects of AG-348, a Pyruvate Kinase Activator, on Anemia and Hemolysis in Patients with Pyruvate Kinase (PK) Deficiency: Data from the DRIVE PK Study

Rachael F Grace1, D Mark Layton2, Christian Rose3, D Holmes Morton4, Hassan Yaish5, Eduard Van Beers6, Kevin Kuo7, Wilma Barcellini8, Frédéric Galactéros9, Yaddanapudi Ravindranath10, Janet L Kwiatkowski11, Bruce Silver12, Charles Kung13, Marvin Cohen14, Hua Yang13, Jeffrey Hixon15, Victor Chubukov13, Penelope A Kosinski13, Lee Silverman13, Lenny Dang13, Huansheng Xu13, Ann J Barbier13, Bertil Glader16

1Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA; 2Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; 3Hôpital Saint Vincent de Paul, Lille, France; 4Central Pennsylvania Clinic, Belleville, PA; 5University of Utah, Salt Lake City, UT; 6Universitair Medisch Centrum Utrecht, Utrecht, Netherlands; 7University of Toronto, Toronto, ON, Canada; 8Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 9Unité des Maladies Génétiques du Globule Rouge, CHU Henri Mondor, Créteil, France; 10Wayne State University School of Medicine - Children’s Hospital of Michigan, Detroit, MI; 11Children’s Hospital of Philadelphia and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; 12Bruce A Silver Clinical Science and Development, Dunkirk, MD; 13Agios Pharmaceuticals, Inc., Cambridge, MA; 14MBC Pharma Solutions, Newtown, PA; 15formerly at Agios, now at KSQ Therapeutics, Cambridge, MA; 16Stanford University School of Medicine, Palo Alto, CA.

Presented at the 58th Annual Meeting and Exposition of American Society of Hematology, December 4, 2016, San Diego, CA.
PK deficiency and the role of AG-348: an allosteric activator of pyruvate kinase R

Description
- Presents at any time of life, as early as the neonatal period with severe hemolytic anemia
- Estimated prevalence ranges from ~1:20K to ~1:485K\(^1-4\)

Etiology
- Caused by mutations in the **PKLR** gene coding for erythrocyte pyruvate kinase (PK-R)

Disease Burden
- Lifelong hemolytic anemia
- Iron overload and jaundice
- Infection risk post-splenectomy

Diagnosis/Treatment
- PK-R enzyme activity and/or genetic testing
- Supportive treatment: transfusions, splenectomy, iron chelation

Active PK-R is a tetramer; mutations (green) decrease the catalytic activity

AG-348 (yellow) binds at the PK-R dimer-dimer interface, away from the active site and the most common mutations

Please see Posters 1263, 1264 and 2452 at the current meeting for more information on PK-R activators

Study design

Open-label, global phase 2 study: 14 centers in the US, Canada, and EU

Transfusion-independent adults with PK deficiency
(ClinicalTrials.gov NCT02476916) n=25 in each arm

Randomization
Stratified by PK-R genotype (none excluded)

Arm 1
300 mg BID

Arm 2
50 mg BID

6 month core dosing period

1 2 3 6 9 12 16 20 24
Assessment points (weeks)

Primary endpoints:
• Safety and tolerability

Secondary endpoints:
• Pharmacokinetics of AG-348
• PD response: ATP, 2,3-DPG

Indicators of clinical activity: hemoglobin, reticulocyte count, and other hematologic parameters

Extension arm

Transfusion independence = no more than 3 units transfused in 12 months prior to the first day of study dosing and no transfusions within 4 months of first day of study dosing

All patients provided written informed consent. BID = twice daily; PD = pharmacodynamic
Demographics and disposition

- Study initiated June 2015; data cut-off September 23, 2016
- Evaluable analysis set: ≥3 weeks of data (n=32)
- Safety analysis set: received at least 1 dose of AG-348 (n=34)
- 13 patients ongoing in the core period (as of September 23, 2016)
 - Early discontinuations in the core period due to: relocation (n=1), AEs (n=3)
- Of the 17 patients who completed the core period, 15 enrolled in the extension period
- 1 patient discontinued in extension period due to physician decision (lack of efficacy)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>50 mg BID, n=17</th>
<th>300 mg BID, n=17</th>
<th>Total, N=34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men/women, n</td>
<td>11/6</td>
<td>9/8</td>
<td>20/14</td>
</tr>
<tr>
<td>Age in years, mean (range)</td>
<td>28.5 (19-45)</td>
<td>37.0 (20-61)</td>
<td>32.8 (19-61)</td>
</tr>
<tr>
<td>Racea white, n</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Hemoglobin (Hb) baseline, g/dL, mean (SD, range)</td>
<td>9.8 (1.41, 7.6–12.4)</td>
<td>8.7 (1.37, 6.5–11.8)</td>
<td>9.2 (1.47, 6.5–12.4)</td>
</tr>
<tr>
<td>Duration of treatment, weeks, median (range)</td>
<td>24.7 (4.7–50.4)</td>
<td>24.0 (2.4–44.4)</td>
<td>24.4 (2.4–50.4)</td>
</tr>
<tr>
<td>Splenectomized, n</td>
<td>14</td>
<td>14</td>
<td>28</td>
</tr>
</tbody>
</table>

aNot reported in 2 patients, 2 patients were Asian; AE = adverse event; SD = standard deviation
Safety summary

- AG-348 was generally well tolerated; the majority of AEs were grade 1–2
 - No grade 4 AEs or deaths
 - 2 patients experienced serious AEs: Grade 2 osteoporosis; hemolysis and anemia due to discontinuation of the drug after a rapid Hb response (patient continued in the study)
 - 3 patients discontinued treatment due to AEs
 - DXA scan data (n=17) show high variability and are inconclusive

<table>
<thead>
<tr>
<th>AEs, regardless of causality (occurring in >5 patients or assessed as Grade ≥3)</th>
<th>50 mg BID n=17</th>
<th>300 mg BID n=17</th>
<th>Total N=34</th>
</tr>
</thead>
<tbody>
<tr>
<td>All grades</td>
<td>Grade ≥3</td>
<td>All grades</td>
<td>Grade ≥3</td>
</tr>
<tr>
<td>Patients experiencing at least 1 AE, n</td>
<td>13</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Headache</td>
<td>7</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Nausea</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Insomnia</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Vomiting</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Anaemia</td>
<td>1</td>
<td>1<sup>a</sup></td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dizziness</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Haemolysis</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

^aGrade 3 anemia, not a serious AE. ^bGrade 3 withdrawal hemolysis and anemia in 46-year-old woman due to abrupt drug withdrawal after a very fast Hb response

AEs were graded using National Cancer Institute Common Terminology Criteria, version 4.03. Hb = hemoglobin; DXA = Dual energy X-ray absorptiometry.
Effect of AG-348 on hormones

- Preliminary findings are consistent with aromatase inhibition by AG-348

Hormone levels assessed at baseline, 12 and 24 weeks

Patients with available data shown

Normal reference low and high limits shown as horizontal dotted lines
Clinical Activity Results
15 of 32 (47%) patients had a maximal increase in Hb >1.0 g/dL
- 15 of 26 patients (58%) who had ≥1 missense mutation had a Hb response
5 patients homozygous for R479H (mis/mis; Amish) were non-responders
Hb response and response maintenance are seen across a range of 4 doses
- Robust Hb responses led to dose decreases with maintained Hb

Evaluable analysis set, ≥3 weeks of data
Hb increases are rapid and sustained

- In patients who had Hb increases >1.0 g/dL (n=15):
 - Median time to Hb increase >1.0 g/dL was 1.4 weeks (range, 1.1–21.0)
 - The mean maximum increase was 3.6 g/dL (range, 1.2–5.2)
- 10 patients had dose reductions: 5 due to rapid Hb increase

Responders n=15, each line represents an individual patient

*aOther dose reductions due to: AEs (n=3), self-reduction due to fatigue (n=1), taper prior to discontinuation (n=1)
Haptoglobin levels increase in responders, indicating decreased hemolysis.

Normal reference low and high limits shown as horizontal dotted lines.
Pharmacodynamic Results
Patients with Hb increases also had increased rate of metabolism in PK-R pathway in peripheral blood

- Rate of metabolism of PK-R pathway was assessed in blood samples from a subset of patients pre and post treatment
- These data suggest a positive correlation between Hb change and change in glycolytic flux

Detailed metabolic characterization in blood from 8 patients

Glycolytic flux assessed ex vivo via incorporation of labelled glucose into the end product, lactate

Representative 4 patients shown here N=8
DRIVE-PK conclusions

- AG-348 is a novel, first-in-class, PK-R activator in clinical testing as a potential disease-altering therapy to improve anemia in patients with PK deficiency
- Daily dosing with AG-348 for up to 6 months is well tolerated
 - Clinical significance of AG-348 aromatase inhibition is unclear
- AG-348 demonstrates clinically relevant rapid and durable increases in Hb in 47% of patients enrolled in the study
 - Hb increase is linked to activation of glycolytic pathway
 - Preliminary genotype-Hb response correlations were observed
- These data highlight the potential of PK-R activators as the first disease-altering treatment for patients with PK deficiency
Acknowledgments

We would like to thank the patients who agreed to participate in this study

- We would like to thank Drs Ellis Neufeld and David Nathan for helpful discussions
- We would also like to thank all the clinical research sites and study investigators:
 - Boston Children’s Hospital; Rachael Grace
 - Stanford University Medical Centre; Bertil Glader
 - University of Utah; Hassan Yaish
 - Weill Cornell – New York Presbyterian Hospital; Sujit Sheth
 - The Children’s Hospital of Philadelphia; Janet Kwiatkowski
 - Central Pennsylvania Clinic; Holmes Morton
 - Wayne State University School of Medicine; Yaddanapudi Ravindranath
 - University of Toronto – University Health Network; Kevin Kuo
 - Hammersmith Hospital; Mark Layton
 - Universitair Medisch Centrum Utrecht; Eduard van Beers
 - Hôpital Henri Mondor; Frederic Galacteros
 - Hôpital Saint Vincent de Paul; Christian Rose
 - Hôpital de la Timone; Emmanuelle Bernit
 - Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico; Wilma Barcellini
- This clinical study was funded by Agios Pharmaceuticals