Effects of AG-348, a Pyruvate Kinase Activator, on Anemia and Hemolysis in Patients with Pyruvate Kinase (PK) Deficiency: Data from the DRIVE PK Study

Rachael F Grace¹, D Mark Layton², Christian Rose³, D Holmes Morton⁴, Hassan Yaish⁵, Eduard Van Beers⁶, Kevin Kuo⁷, Wilma Barcellini⁸, Frédéric Galactéros⁹, Yaddanapudi Ravindranath¹⁰, Janet L Kwiatkowski¹¹, Bruce Silver¹², Charles Kung¹³, Marvin Cohen¹⁴, Hua Yang¹³, Jeffrey Hixon¹⁵, Victor Chubukov¹³, Penelope A Kosinski¹³, Lee Silverman¹³, Lenny Dang¹³, Huansheng Xu¹³, Ann J Barbier¹³, Bertil Glader¹⁶

¹Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA; ²Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; ³Hôpital Saint Vincent de Paul, Lille, France; ⁴Central Pennsylvania Clinic, Belleville, PA; ⁵University of Utah, Salt Lake City, UT; ⁶Universitair Medisch Centrum Utrecht, Utrecht, Netherlands; ⁷University of Toronto, Toronto, ON, Canada; ⁸Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; ⁹Unité des Maladies Génétiques du Globule Rouge, CHU Henri Mondor, Créteil, France; ¹⁰Wayne State University School of Medicine - Children's Hospital of Michigan, Detroit, MI; ¹¹Children's Hospital of Philadelphia and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; ¹²Bruce A Silver Clinical Science and Development, Dunkirk, MD; ¹³Agios Pharmaceuticals, Inc., Cambridge, MA; ¹⁴MBC Pharma Solutions, Newtown, PA; ¹⁵formerly at Agios, now at KSQ Therapeutics, Cambridge, MA; ¹⁶Stanford University School of Medicine, Palo Alto, CA.

Presented at the 58th Annual Meeting and Exposition of American Society of Hematology, December 4, 2016, San Diego, CA

PK deficiency and the role of AG-348: an allosteric activator of pyruvate kinase R

Description	 Presents at any time of life, as early as the neonatal period with severe hemolytic anemia Estimated prevalence ranges from ~1:20K to ~1:485K¹⁻⁴
Etiology	 Caused by mutations in the <i>PKLR</i> gene coding for erythrocyte pyruvate kinase (PK-R)
Disease Burden	 Lifelong hemolytic anemia Iron overload and jaundice Infection risk post-splenectomy
Diagnosis/ Treatment	 PK-R enzyme activity and/or genetic testing Supportive treatment:
	transfusions, splenectomy, iron chelation

Active PK-R is a tetramer; mutations (green) decrease the catalytic activity

AG-348 (yellow) binds at the PK-R dimer-dimer interface, away from the active site and the most common mutations

Please see Posters 1263, 1264 and 2452 at the current meeting for more information on PK-R activators

Study design

Open-label, global phase 2 study: 14 centers in the US, Canada, and EU

Transfusion-independent adults with PK deficiency (ClinicalTrials.gov NCT02476916) n=25 in each arm

Demographics and disposition

- Study initiated June 2015; data cut-off September 23, 2016
- Evaluable analysis set: ≥ 3 weeks of data (n=32)
- Safety analysis set: received at least 1 dose of AG-348 (n=34)
- 13 patients ongoing in the core period (as of September 23, 2016)
 - Early discontinuations in the core period due to: relocation (n=1), AEs (n=3)
- Of the 17 patients who completed the core period, 15 enrolled in the extension period
- 1 patient discontinued in extension period due to physician decision (lack of efficacy)

Characteristics	50 mg BID, 300 mg BII n=17 n=17		Total, N=34	
Men/women, n	11/6	9/8	20/14	
Age in years, mean (range)	28.5 (19-45)	37.0 (20-61)	32.8 (19-61)	
Race ^a white, n	15	15	30	
Hemoglobin (Hb) baseline, g/dL, mean (SD, range)	9.8 (1.41, 7.6–12.4)	8.7 (1.37, 6.5–11.8)	9.2 (1.47, 6.5–12.4)	
Duration of treatment, weeks, median (range)	24.7 (4.7–50.4)	24.0 (2.4–44.4)	24.4 (2.4–50.4)	
Splenectomized, n	14	14	28	

^aNot reported in 2 patients, 2 patients were Asian; AE = adverse event; SD = standard deviation

Safety summary

- AG-348 was generally well tolerated; the majority of AEs were grade 1–2
 - No grade 4 AEs or deaths
 - 2 patients experienced serious AEs: Grade 2 osteoporosis; hemolysis and anemia due to discontinuation of the drug after a rapid Hb response (patient continued in the study)
 - 3 patients discontinued treatment due to AEs
 - DXA scan data (n=17) show high variability and are inconclusive

AEs, regardless of causality (occurring in >5 patients or	50 mg BID n=17		300 mg BID n=17		Total N=34	
assessed as Grade ≥3)	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Patients experiencing at least 1 AE, n	13	2	17	6	30	8
Headache	7	0	8	0	15	0
Nausea	7	0	7	0	14	0
Insomnia	3	1	10	1	13	2
Fatigue	3	0	3	0	6	0
Vomiting	2	0	4	0	6	0
Hypertriglyceridemia	0	0	4	3	4	3
Anaemia	1	1 ^a	1	1 ^b	2	2
Hypertension	0	0	1	1	1	1
Dizziness	2	0	1	1	3	1
Haemolysis	0	0	2	1 ^b	2	1

^aGrade 3 anemia, not a serious AE. ^bGrade 3 withdrawal hemolysis and anemia in 46-year-old woman due to abrupt drug withdrawal after a very fast Hb response

AEs were graded using National Cancer Institute Common Terminology Criteria, version 4.03. Hb = hemoglobin; DXA = Dual energy X-ray absorptiometry

Effect of AG-348 on hormones

Preliminary findings are consistent with aromatase inhibition by AG-348

Normal reference low and high limits shown as horizontal dotted lines

Clinical Activity Results

Maximum increase in hemoglobin (Hb)

- 15 of 32 (47%) patients had a maximal increase in Hb >1.0 g/dL
 - 15 of 26 patients (58%) who had ≥1 missense mutation had a Hb response
- 5 patients homozygous for R479H (mis/mis; Amish) were non-responders
- Hb response and response maintenance are seen across a range of 4 doses
 - Robust Hb responses led to dose decreases with maintained Hb

Hb increases are rapid and sustained

- In patients who had Hb increases >1.0 g/dL (n=15):
 - Median time to Hb increase >1.0 g/dL was 1.4 weeks (range, 1.1–21.0)
 - The mean maximum increase was 3.6 g/dL (range, 1.2–5.2)
- 10 patients had dose reductions: 5 due to rapid Hb increase^a

Haptoglobin levels increase in responders, indicating decreased hemolysis

Normal reference low and high limits shown as horizontal dotted lines

Pharmacodynamic Results

Patients with Hb increases also had increased rate of metabolism in PK-R pathway in peripheral blood

- Rate of metabolism of PK-R pathway was assessed in blood samples from a subset of patients pre and post treatment
- These data suggest a positive correlation between Hb change and change in glycolytic flux

12

Chubukov V et al. 58th American Society of Hematology Annual Meeting; Dec 3–6, 2016; San Diego, CA. Poster 2452

DRIVE-PK conclusions

- AG-348 is a novel, first-in-class, PK-R activator in clinical testing as a potential disease-altering therapy to improve anemia in patients with PK deficiency
- Daily dosing with AG-348 for up to 6 months is well tolerated
 - Clinical significance of AG-348 aromatase inhibition is unclear
- AG-348 demonstrates clinically relevant rapid and durable increases in Hb in 47% of patients enrolled in the study
 - Hb increase is linked to activation of glycolytic pathway
 - Preliminary genotype-Hb response correlations were observed
- These data highlight the potential of PK-R activators as the first disease-altering treatment for patients with PK deficiency

Acknowledgments

We would like to thank the patients who agreed to participate in this study

- We would like to thank Drs Ellis Neufeld and David Nathan for helpful discussions
- We would also like to thank all the clinical research sites and study investigators:
 - Boston Children's Hospital; Rachael Grace
 - Stanford University Medical Centre; Bertil Glader
 - University of Utah; Hassan Yaish
 - Weill Cornell New York Presbyterian Hospital; Sujit Sheth
 - The Children's Hospital of Philadelphia; Janet Kwiatkowski
 - Central Pennsylvania Clinic; Holmes Morton
 - Wayne State University School of Medicine; Yaddanapudi Ravindranath
 - University of Toronto University Health Network; Kevin Kuo
 - Hammersmith Hospital; Mark Layton
 - Universitair Medisch Centrum Utrecht; Eduard van Beers
 - Hôpital Henri Mondor; Frederic Galacteros
 - Hôpital Saint Vincent de Paul; Christian Rose
 - Hôpital de la Timone; Emmanuelle Bernit
 - Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico; Wilma Barcellini
- This clinical study was funded by Agios Pharmaceuticals