

¹Van Creveldkliniek, University Medical Center Utrecht, Utrecht, Netherlands; ²Oncohematology Unit Physiopathology of Anemias Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; ³Red cell laboratory, Children's Hospital, University Würzburg, Schwerpunktpraxis für Pädiatrische Hämatologie-Onkologie, Munich, Germany; ⁴Children's Hospital of Pennsylvania, Philadelphia, PA; ⁵Duke University Medical Center, Boston, MA; ⁷Children's Mercy Hospital, Kansas City, MO; ⁸Central Pennsylvania, Philadelphia, PA; ⁹Stanford University, MO; ⁹Stanford University, PA; ⁹Stanford University, Lucile Packard Children's Hospital, Palo Alto, CA; ¹⁰Klinikum Kassel GmbH, Kassel, Germany; ¹¹Primary Children's Hospital, Phoenix, AZ; ¹⁴CHU SainteJustine, Montreal, QC, Canada; ¹⁵University of Toronto, University Health Network, Ontario, Canada; ¹⁶University of Freiburg, Germany; ¹⁸Ann & Robert H. Lurie Children's Hospital of Chicago, IL; ¹⁹Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, MI; ²⁰St. Jude Children's Research Hospital, Memphis, TN; ²¹DDC Clinic for Special Needs Children, Middlefield, OH; ²²Zentrum für Kunderund Jugendmedizin, Heidelberg, Germany; ²³McMaster University, Hamilton, ON, Canada; ²⁴Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH; ²⁵University of Mississippi Medical Center, Jackson, MS; ²⁶The University of Vermont Children's Hospital, Burlington, VT; ²⁷New York Presbyterian Hospital, Weil Cornell Medical College, New York, NY

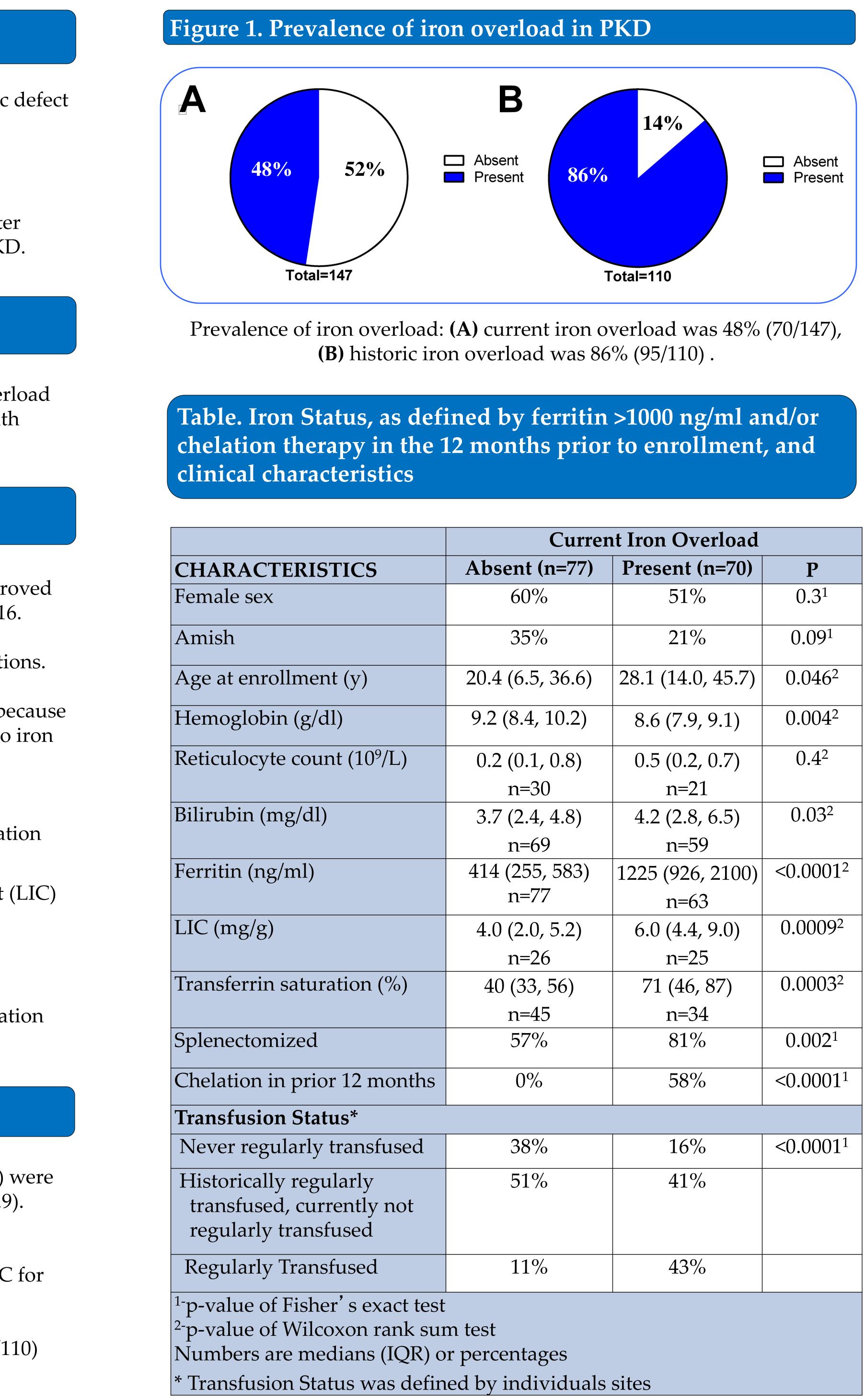
BACKGROUND

- Pyruvate Kinase Deficiency (PKD) is the most common glycolytic defect which causes congenital non-spherocytic hemolytic anemia.
- The prevalence of iron overload is not well described for PKD.
- A multicenter Natural History Study has been established to better characterize the spectrum of symptoms and complications of PKD.

OBJECTIVE

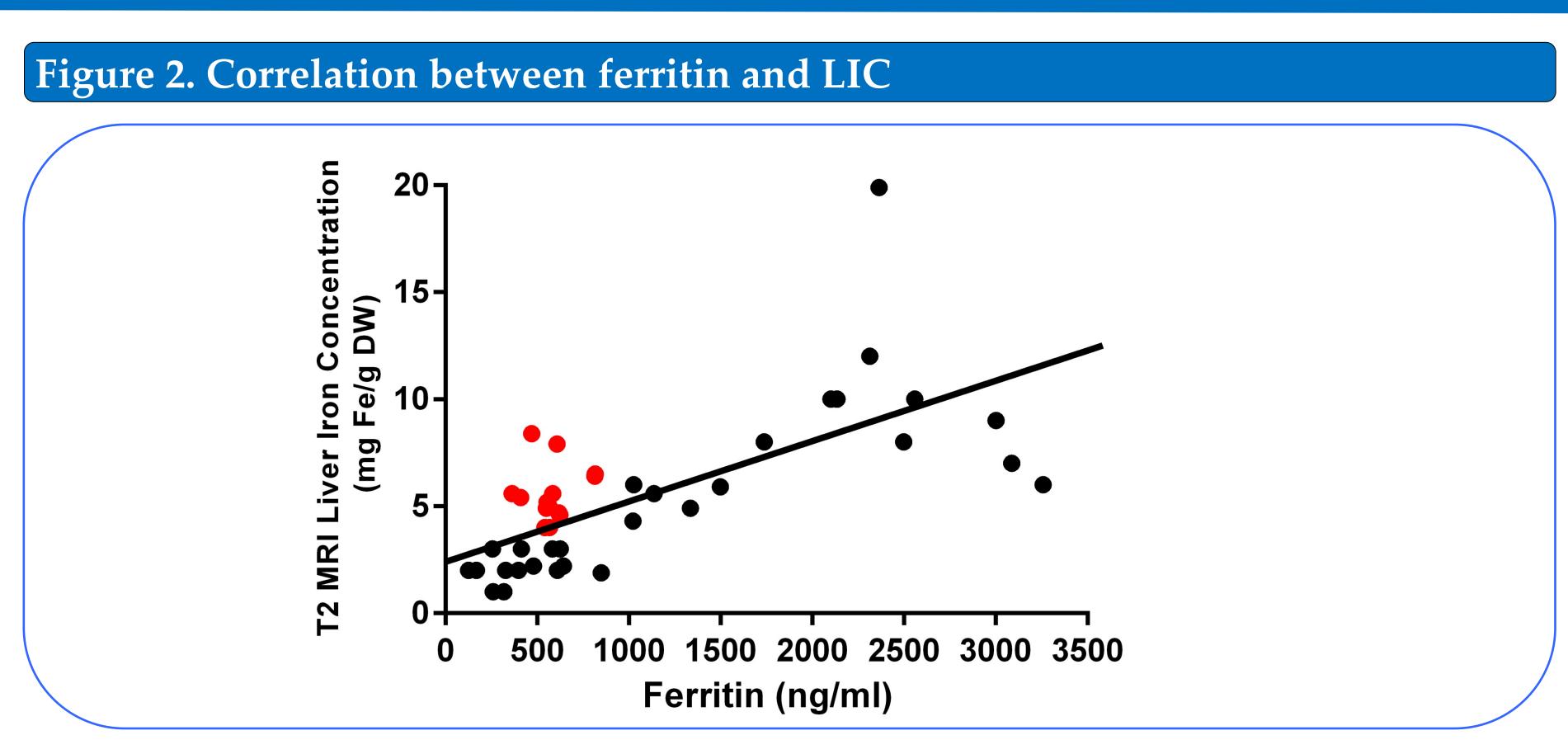
To describe the demographic features and prevalence of iron overload in regularly transfused and non-regularly transfused patients with PKD.

METHODS


- 203 patients enrolled on the Natural History Study at 29 IRB approved sites in North America and Europe from March 2014 to April 2016.
- Participants were confirmed to have two pathogenic *PKLR* mutations.
- Children < 1 year of age (n=9) were excluded from this analysis, because elevated ferritin levels in this age group are less reliably related to iron overload.
- Iron overload was defined as:
 - **Current iron overload**: plasma ferritin >1000 ng/mL or chelation therapy during the 12 months prior to enrollment.
 - **Historic iron overload**: prior MRI showed liver iron content (LIC) >3 mg/g dry weight or ever on chelation therapy.
- Tests of association were performed using Fisher's exact test (categorical) and Wilcoxon rank sum test (continuous). Linear associations between variables were measured by Pearson correlation coefficient.

RESULTS

- Of the 194 patients, 111 (57%) were adults ≥18 years and 83 (43%) were children. The median age at enrollment was 20.6 y (range: 1.3-69.9). Splenectomy had been performed in 65% (126/194).
- Ferritin levels had been completed for 72% (140/194) and MRI LIC for 32% (62/194).
- 48% (70/147) of patients had current iron overload and 86% (95/110) had historic iron overload (Figure 1).


Iron Overload Is Highly Prevalent in All Disease Severity States in **Pyruvate Kinase Deficiency (PKD)**

Eduard J. van Beers, MD, PhD¹, Wilma Barcellini, MD², Stefan W. Eber, MD³, Janet L. Kwiatkowski, MD⁴, Jennifer A. Rothman, MD⁵, Ellis J. Neufeld, MD, PhD⁶, Mukta Sharma, MD, MPH⁷, D Holmes Morton, MD⁸, Bertil Glader, MD, PhD⁹, Nina Kollmar, MD¹⁰, Hassan M. Yaish, MD¹¹, Jenny M. Despotovic, DO, MS¹², Christine M. Knoll, MD¹⁴, Kevin Kuo, BSc, MD¹⁵, Peter E. Newburger, MD¹⁶, Marcin W Wlodarski, MD¹⁷, Alexis A. Thompson, MD¹⁸, Yaddanapudi Ravindranath, MBBS¹⁹, Winfred C. Wang, MD²², Vicky R. Breakey, BSc, MD, MEd, FRCPC²³, Melissa J. Rose, DO²⁴, Melissa Rhodes, MD²⁵, Heather A. Bradeen, MD²⁶, Sujit Sheth, MD²⁷, Dongjing Guo, MS⁶, Wendy B. London, PhD⁶ and Rachael F. Grace, MD⁶

Authors' Disclosures: RG, BG, EN, HY, DHM, and SE are Scientific Advisors for Agios Pharmaceuticals. Agios Pharmaceuticals is the sponsor of the PKD NHS. **Remaining authors have no relevant conflicts of interest to disclose**.

ron Overload	
resent (n=70)	Р
51%	0.31
21%	0.091
8.1 (14.0, 45.7)	0.046 ²
8.6 (7.9, 9.1)	0.004 ²
0.5 (0.2, 0.7) n=21	0.4 ²
4.2 (2.8, 6.5) n=59	0.032
25 (926, 2100) n=63	< 0.0001 ²
6.0 (4.4, 9.0) n=25	0.00092
71 (46, 87) n=34	0.0003 ²
81%	0.0021
58%	< 0.00011
16%	$< 0.0001^{1}$
41%	
43%	

Correlation between ferritin and LIC (r=0.62, p<0.0001). Red circles indicate the individuals with a mean ferritin <1000 ng/mL but a LIC >3 mg/g DW.

RESULTS

- prevalence of iron overload was 26% (8/31).
- rate of iron overload (34% vs. 51%).
- (p=0.004) and higher bilirubin (p=0.03).
- overload was broad (1.3-69.9 years).
- LIC 14 mg/g) at the time of the MRI.

CONCLUSIONS

- or transfusion status.
- hepatic iron overload.
- for iron overload using ferritin and, at least once, using MRI.

Author Contact Information: Rachael.Grace@childrens.harvard.edu E.J.vanBeers-3@umcutrecht.nl

• Baseline characteristics in patients with and without iron overload are shown in the Table.

• Even patients who were never regularly transfused and had a hemoglobin >8.7 g/dl, the

• The frequency of iron overload was significantly higher in patients who had a prior splenectomy (p<0.0001), even after controlling for transfusion history (p<0.0001). However, Amish patients had a higher rate of splenectomy than non-Amish (96% vs. 52%) but a lower

• The frequency of iron overload was significantly higher in those with a lower baseline Hb

• Age was associated with iron overload (p=0.046); although, the age range of patients with iron

Data on cardiac iron status was available for 66 patients. Only 2 had cardiac iron overload (defined as T2* <20 ms); they were age 5 (T2* 17.8 ms, LIC 5 mg/g) and 22 years (T2* 19.7 ms,

• Iron overload is a common, serious complication in PKD, regardless of age, disease severity,

• The relationship between splenectomy and risk of iron overload needs further exploration.

• Although ferritin correlates with LIC for the PKD population overall, at the individual patient level, ferritin is not a good predictor of LIC and a ferritin <1000 ng/ml does not exclude

We recommend that all patients with PKD starting at age 1 year should be screened annually