The IDH1 mutant inhibitor AG-120 shows strong inhibition of 2-HG production in an orthotopic IDH1 mutant glioma model in vivo

Brandon Nicolay1, Rohini Narayanaswamy1, Ella Aguado1, Raj Nagaraja1, Josh Murtie1, Guowen Liu1, Yuko Ishii1
1Agios Pharmaceuticals, Inc., Cambridge, MA, USA

BACKGROUND

- Somatic mutations in the metabolic enzymes isocitrate dehydrogenase (IDH) 1 and 2 confer neomorphic enzymatic activity, which results in the accumulation of the oncometabolite 2-hydroxyglutarate (2-HG).1,2
- 2-HG drives multiple oncogenic processes, including increased histone and DNA methylation, leading to a block in cellular differentiation.3,4
- The threshold of inhibition of 2-HG production required for antitumor activity remains to be defined.
- IDH1/2 mutations occur in >70% of diffuse low-grade gliomas (LGG).5
- Standard of care treatment for patients with diffuse LGG involves combined modality approaches, including surgery, radiation, and chemotherapy.6
- Previously reported data suggested that 2-HG production by the mutant IDH1 (mIDH1) protein radiosensitizes glioma cells7,8 and that inhibition of mIDH1 resulted in a loss of radiosensitivity in vitro.9
- AG-120 (ivosidenib) is an orally available, potent, targeted inhibitor of the IDH1 protein that is currently being assessed in two clinical trials in solid tumors: ClinicalTrials.gov NCT02073994 and NCT02989857.
- Clinical data from the subset of patients with nonenhancing glioma were reported in oral presentation ACTR-46.

OBJECTIVES

- Validate that AG-120 crosses the blood-brain barrier and inhibits 2-HG production in an orthotopic mouse xenograft model of a human IDH1-R132H glioma.
- Determine whether AG-120 treatment antagonizes the efficacy of radiation therapy (RT) in vivo.

METHODS

Orthotopic mouse xenograft model of human grade 3 mIDH1-R132H glioma

- TS603 glioma cells with an endogeneous heterozygous IDH1-R132H mutation (5×10⁶ cells) were intracranially implanted into female CB17 SCID mice on Day 0.10
- The TS603 cell line was derived from a patient with grade 3 anaplastic oligodendroglioma, and also harbors a co-deletion of the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q).11
- Assessment of pharmacokinetics (PK) and pharmacodynamics (PD) (Figure 1A):
 - Following tumor engraftment for 40 days, mice were randomized to receive either vehicle (n=12) or AG-120 50, 150, or 450 mg/kg orally (PO) twice daily (BID) (n=16 each) for 4 days.
 - At 1, 4, 12, and 24 hr after the last dose of AG-120, three mice in the vehicle group and four mice in each AG-120 dose group were sacrificed, and plasma, brain, and brain tumor samples were analyzed for AG-120 and 2-HG.
 - Evaluation of AG-120 in combination with RT (Figure 1B):
 - Following tumor engraftment for 36 days, 60 mice were randomized into five treatment groups (n=12 each) and treated with either vehicle, RT (2 Gy focal radiation once daily [QD]), and/or AG-120 (150 mg/kg PO BID) as indicated for 21 days (Days 37–57).12
 - Tumor volume was measured by magnetic resonance imaging (MRI) on Day 36 and every 3–5 days during dosing, and survival was assessed from Day 0 to Day 85.
Subcutaneous mouse xenograft model of human grade 3 mIDH1-R132H glioma

- Male ICR SCID mice were injected subcutaneously with 10⁵ TS603 glioma cells (Figure 1C).
- Following tumor engraftment for 43 days, 24 mice were randomized to receive either vehicle (n=12) or AG-120 (150 mg/kg PO BID, n=12) for 21 days.
- Tumor volume was assessed every 3–4 days during dosing.

RESULTS

Validation of 2-HG inhibition by AG-120 in orthotopic grade 3 mIDH1 glioma

- AG-120 strongly inhibited 2-HG production in human mIDH1 brain tumor xenografts in mice dosed at 50, 150, or 450 mg/kg PO BID (Figure 2).
- AG-120 was detectable in the brain and brain tumor tissues of the mice, although at much lower exposures than in the plasma (Table 1).
- AG-120 treatment did not antagonize RT efficacy in orthotopic grade 3 mIDH1 glioma
 - AG-120 dosed at 150 mg/kg PO BID, which inhibits tumor 2-HG production by 77–79% (Figure 2), did not have an antagonistic effect on the antitumor activity of RT, but did not confer monotherapy benefit in this model (Figure 3).
 - Likewise, AG-120 (150 mg/kg PO BID) exhibited 2-HG production by >80% and reduced in vivo growth of a subcutaneous grade 3 mIDH1 glioma by 52% (Figure 4).
- AG-120 treatment reduced in vivo growth of a subcutaneous grade 3 mIDH1 glioma
 - AG-120 (150 mg/kg PO BID) exhibited 2-HG production by >80% and reduced in vivo growth of a subcutaneous grade 3 mIDH1 glioma by 52% (Figure 5).

CONCLUSIONS

- In mice engrafted with orthotopic human grade 3 mIDH1-R132H gliomas:
 - AG-120 had very low brain penetration following oral administration, but sufficient AG-120 brain exposure was achieved to confer a dose-dependent reduction in 2-HG levels in brain tumors, with 85% maximal inhibition achieved.
 - Inhibition of 2-HG by 79% did not confer an antitumor effect in this model.
 - The combination of AG-120 + RT demonstrated no antagonism of RT efficacy.
 - In a subcutaneous human grade 3 mIDH1-R132H glioma mouse model, mIDH1 inhibition by AG-120 impeded tumor growth and, after achieving >84% 2-HG production inhibition.
 - These observations support the clinical investigation of AG-120 in patients with mIDH1-driven gliomas.
 - Our findings do not support previous in vitro nonclinical work13 that suggested a potential antagonism between mIDH1 inhibition and RT.

Figure 1. Human grade 3 mIDH1-R132H glioma mouse xenograft model development and in vivo study designs

Figure 2. AG-120 concentration in plasma and 2-HG concentration in orthotopic grade 3 mIDH1 glioma after eight oral doses

Figure 3. No antagonistic effect of AG-120 treatment on RT efficacy in orthotrophic grade 3 mIDH1 glioma

Figure 4. No antagonistic effect of AG-120 treatment on RT survival benefit in orthotrophic grade 3 mIDH1 glioma

Figure 5. Inhibition of 2-HG production and tumor growth by AG-120 in a subcutaneous grade 3 mIDH1 glioma

Table 1. Brain penetration of AG-120

Table: 2-HG inhibition by AG-120 in orthotopic grade 3 mIDH1 glioma

Table: Brain penetration of AG-120

50 mg/kg BID 150 mg/kg BID 450 mg/kg BID

Brain AUC0–12 (hr·ng/g)
727 1480 3550
Plasma AUC0–12 (hr·ng/mL)
19.200 37.400 99.400
Brain-to-tumor ratio
0.037 0.039 0.035
% 2-HG inhibition (AUC0–12)
71 79 85

EXTH-59

Presented at the 22nd Annual Scientific Meeting and Education Day of the Society for Neuro-oncology, November 16–19, 2017, San Francisco, CA, USA

References