Ivosidenib improves overall survival relative to standard therapies in relapsed or refractory mutant *IDH1* AML: results from matched comparisons to historical controls

Peter Paschka, MD,^{1*} Hervé Dombret, MD,² Xavier Thomas, MD, PhD,³ Christian Recher, MD, PhD,⁴ Sylvain Chantepie, MD,⁵ Pau Montesinos, MD, PhD,^{6,7} Evelyn Acuña-Cruz, MD,⁷ Paresh Vyas, MRCP FRCP FRCPath,⁸ Karl-Anton Kreuzer, MD,⁹ Michael Heuser, MD,¹⁰ Klaus H. Metzeler, MD,¹¹ Michael Dennis, MD,¹² Bruno Quesnel, MD, PhD,¹³ Mathilde Hunault-Berger, MD, PhD,¹⁴ Mohamad Mohty, MD, PhD,¹⁵ Arnaud Pigneux, MD, PhD,¹⁶ Stéphane de Botton, MCU-PH,¹⁷ Daniela Weber, MSc,¹ Konstanze Döhner, MD,¹ Gary Milkovich, PharmD,¹⁸ John Reitan, PharmD,¹⁸ Sarah C. MacDonald, SD,¹⁹ Deborah Casso, MPH,²⁰ Michael Storm, MSc,²¹ Hua Liu, PhD,²¹ Stephanie M. Kapsalis, OTR,²¹ Eyal C. Attar, MD,²¹ Thomas Winkler, MD,²¹ Hartmut Döhner, MD¹

¹Ulm University Hospital Ulm, Germany; ²Hôpital Saint-Louis, Paris, France; ³Centre Hospitalier Lyon-Sud, Pierre-Benite, France; ⁴IUCT-Oncopole, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; ⁵Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁶CIBERONC, Instituto Carlos III, Madrid, Spain; ⁷Hospital Universitario y Politécnico La Fe, Valencia, Spain; ⁸University of Oxford, Oxford, United Kingdom; ⁹Uniklinik Köln, Germany; ¹⁰Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; ¹¹Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; ¹²The Christie NHS Foundation Trust, Manchester, United Kingdom; ¹³Centre Hospitalier Régional Universitaire de Lille, Lille, France; ¹⁴CRCINA Centre Hospitalier Universitaire d'Angers, Angers, France; ¹⁵Sorbonne University, Hôpital Saint-Antoine, Paris, France; ¹⁶CHU Bordeaux, Université de Bordeaux, Bordeaux, France; ¹⁷Institut Gustave Roussy, Villejuif, France; ¹⁸RJM Group, LLC, Washington, DC, United States; ¹⁹IQVIA, Kirkland, QC, Canada; ²⁰IQVIA, Seattle, WA, United States; ²¹Agios Pharmaceuticals, Inc., Cambridge, MA, United States

*Current address: Klinikum Ludwigshafen, Ludwigshafen am Rhein, Germany

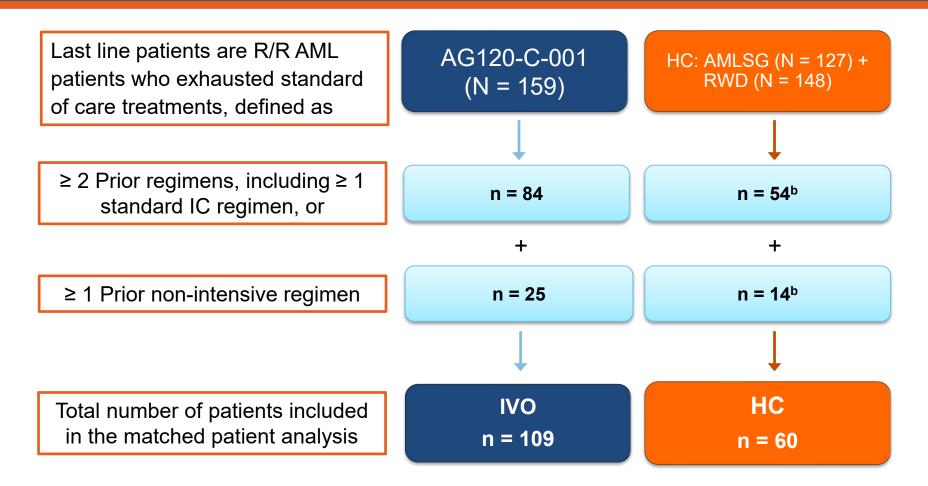
This study was funded by Agios Pharmaceuticals, Inc.

Background

Background

- IVO is an oral, targeted inhibitor of mIDH1 approved by the FDA for the treatment of mIDH1 R/R AML, and in adults with ND AML ≥ 75 years of age or patients ineligible for IC, based on the results of the single-arm, AG120-C-001 (NCT02074839) study
- A propensity score matching analysis was performed to compare the IVO treatment group with patients from a historical control group (HC; AMLSG registry [NCT01252485] + RWD) treated with available therapies¹
 - Consistent benefit of IVO monotherapy was observed regardless of propensity score methods applied with HRs ranging from 0.43–0.73 and non-overlapping 95% CIs
 - After applying the IPTW method, IVO monotherapy prolonged median overall survival (IVO, 9.3 mo; HC, 4.4 mo) with non-overlapping 95% CIs and HR (95% CI) of 0.621 (0.478, 0.807, IPTW method)
- For R/R AML patients who have exhausted standard of care treatment options, published studies indicate a lack of effective treatments (OS, 2–4 mo)^{2–4}

Objective and study populations


Objective

 The aim of this analysis was to investigate the benefit of IVO monotherapy in patients who exhausted standard of care treatment options

Study populations

R/R AML patients with <i>IDH1</i> mutation								
AG120-C-001 (N = 159)	AMLSG Registry (N = 127)	RWD (N = 148)						
 Treated with IVO 500 mg Relapsed after transplantation ≥ 2 Relapses Refractory to initial induction or reinduction treatment Relapsed ≤ 1 yr of initial treatment, excluding patients with favorable risk status 	 German AML study group or clinical registry No treatment with m<i>IDH1</i> inhibitor ≥ 1 standard IC regimen between 1998 and 2012 	 Retrospective chart review study from France, Germany, UK, and Spain ≥ 18 years at time of R/R diagnosis ≥ 1 anti-leukemic agent for R/R AML No treatment with m/DH1 inhibitor 						

Identification of patients in the last line setting^a

^aA medical review of prior therapies was conducted to identify AG120-C-001 and HC patients who met the criteria for last line treatment. ^bEight patients were not considered for this analysis due to favorable baseline cytogenic risk (n = 5) and missing prognostic factors (n = 3).

AML = acute myeloid leukemia; AMLSG = AML Study Group; HC = historical control; IC = intensive chemotherapy; IVO = ivosidenib; R/R = relapsed/refractory; RWD = real-world chart review study

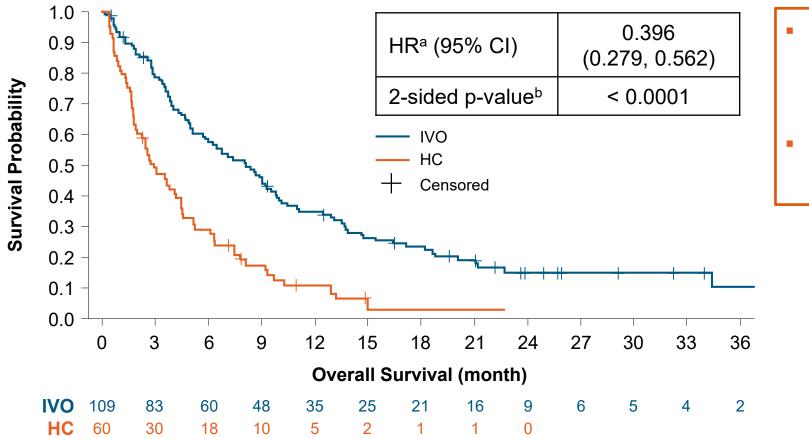
Matched patient analysis using propensity score method key prognostic factors

Key prognostic				Weighted standardized differences		 Two approaches, optimal full matching and IPTW, 	
factors, n (%)	IVO (N = 109)	HC (N = 60)	Standardized differences	Optimal full matching	IPTW	were applied	
Prior HSCT	31 (28.4)	16 (26.7)	0.040	0.038	0.016		
Age, yr, mean (SD)	64.1 (14.0)	61.8 (13.1)	0.167	-0.121	-0.012		
Number of prior regimensª < 2 ≥ 2	23 (21.1) 86 (78.9)	12 (20.0) 48 (80.0)	0.027 0.027	-0.249 0.249	-0.028 0.028		
Nature of AML <i>De novo</i> Secondary	77 (70.6) 32 (29.4)	45 (75.0) 15 (25.0)	-0.098 0.098	0.057 0.057	0.012 0.012		
Cytogenetic risk status ^b Intermediate Poor	68 (62.4) 41 (37.6)	44 (73.3) 16 (26.7)	-0.236 0.236	-0.003 0.003	0.021 0.021		
Primary refractory	36 (33.0)	14 (23.3)	0.217	-0.010	-0.018		

^aDetermined by medical review. ^bDetermined using NCCN 2015 cytogenetic group. AML = acute myeloid leukemia; HC = historical control; HSCT = hematopoietic stem cell transplant; IPTW = inverse probability of treatment weighting method; IVO = ivosidenib;

NCCN = National Comprehensive Cancer Network; SD = standard deviation; yr = year.

IVO monotherapy demonstrates a significant overall survival advantage


	Unmatched		IPTW		Optimal full matching	
	IVO	HC	IVO	HC	IVO	HC
OS ^a , median (95% CI)	8.1 (5.7, 9.5)	3.0 (1.9, 4.5)	8.1 (5.7, 9.8)	2.9 (1.9, 4.5)	8.1 (5.1, 9.5)	2.6 (1.8, 4.1)
Hazard ratio ^a (95% CI)	0.417 (0.292, 0.593)		0.396 (0.279, 0.562)		0.438 (0.306, 0.627)	
P-value ^b	< 0.0001		< 0.0001		0.003	

A significant OS benefit was observed for IVO monotherapy in the unmatched population and independent of propensity score method

^aCox regression analysis, using the key prognostic factors as covariates, was applied to estimate HR of OS, and the corresponding 95% CI was estimated using the sandwich estimator. ^bP-value based on 2-sided log-rank test. CI = confidence interval; HC = historical control; HR = hazard ratio; IPTW = inverse probability of treatment weighting method; IVO = ivosidenib; OS = overall survival

Kaplan–Meier curves demonstrate significant OS benefit for IVO

IPTW

 Clear separation of the IVO and HC KM curves demonstrates that patients in the last line setting benefit from IVO treatment

 KM curves were comparable for unmatched and optimal full matching

7

^aCox regression analysis, using the key prognostic factors as covariates, was applied to estimate HR and the corresponding 95% CI was estimated using the sandwich estimator. ^bP-value based on 2-sided log-rank test. CI = confidence interval; HC = historical control; HR = hazard ratio; IPTW = inverse probability of treatment weighting method; IVO = ivosidenib; KM = Kaplan-Meier; OS = overall survival

Conclusions

- In the R/R AML last line setting, the benefit of IVO monotherapy was observed when not applying propensity score matching/weighting compared with standard of care therapies in historical controls
- A consistent benefit of IVO monotherapy was observed after applying different propensity score matching/weighting methods
- Compared to historical controls, an increased benefit of IVO monotherapy was observed in the full population and this analysis demonstrated that the benefit of IVO is even more compelling in the last line setting