Phase 1 Multiple Ascending Dose Study of Safety, Tolerability, and Pharmacokinetics/Pharmacodynamics of Mitapivat (AG-348) in Subjects with Sickle Cell Disease

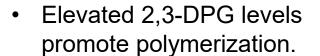
NCT04000165; Investigator-initiated trial; Principal Investigator: Swee Lay Thein

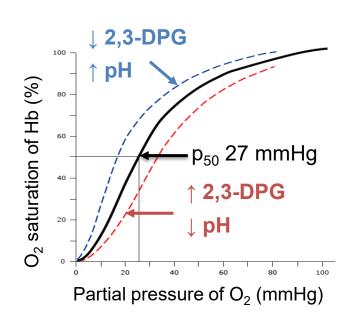
<u>Julia Z. Xu¹</u>, Anna Conrey¹, Ingrid Frey¹, Jim Nichols¹, Laurel A. Menapace¹, Laxminath Tumburu¹, Timothy Lequang¹, Quan Li², Emily B. Dunkelberger², Eric R. Henry², Troy Cellmer², Varsha Iyer³, Heidi Mangus³, Charles Kung³, Lenny Dang³, Penelope Kosinski³, Peter Hawkins³, Neal Jeffries⁴, William A. Eaton², and Swee Lay Thein¹

¹Sickle Cell Branch, National Heart, Lung, and Blood Institute, ²Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, United States; ³Agios Pharmaceuticals, Inc., Cambridge, MA, United States, ⁴Office of Biostatistics Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States

Abstract #681

62nd American Society of Hematology Annual Meeting


December 7, 2020



Pyruvate Kinase R (PKR): A new disease modifying target in SCD?

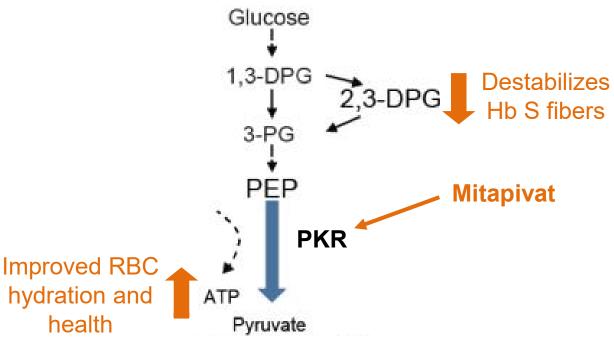
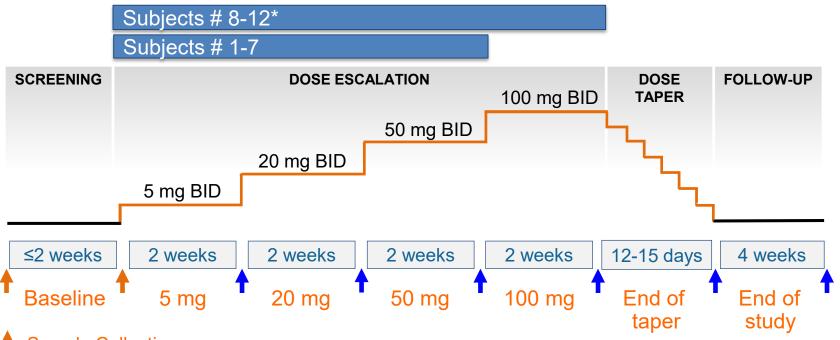

Polymerization of deoxy-Hb S results in vasoocclusion and hemolytic anemia and is the root cause of sickle cell disease (SCD) complications.

Image: Section of Sectio


Mitapivat (AG-348) is an oral PKR activator that decreases 2,3-DPG and increases ATP levels¹ and improves anemia in PK deficiency and thalassemia.^{2,3}

ATP, adenosine triphosphate; DPG, diphosphoglycerate; Hb, hemoglobin; O₂, oxygen; PKR, red-cell pyruvate kinase; RBC, red blood cell. ¹ Yang et al. Clin Pharmacol Drug Dev. 2018,00(0)1–14; ² Grace et al. NEJM. 2019;5;381(10):933-944; ³ Kuo et al. Abstract, EHA 2020.

Study Design: Dose Escalation of Mitapivat in SCD

- Nonrandomized, open-label, Phase 1 study; N ≈ 15–25
- Adults (age \geq 18 years) with stable Hb SS disease eligible
- No transfusions or changes in hydroxyurea/L-glutamine within 90 days

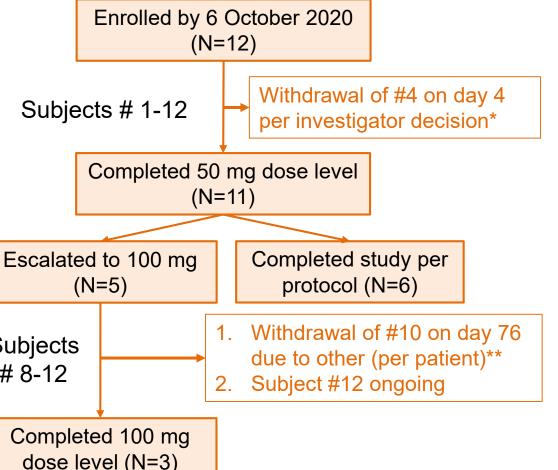
Primary endpoints:

- Safety and tolerability
 - Changes in Hb and hemolytic markers

Secondary endpoints:

- Pharmacokinetics
- 2,3-DPG and ATP levels
- O₂ dissociation and sickling tendency**

Sample Collection


Hb, hemolytic and pharmacodynamic markers (presented in efficacy analysis)

*100 mg dose level added to protocol with amendment #6. BID, twice daily.

** Data is incomplete due to disruptions related to COVID-19 pandemic.

Demographics, Disease Characteristics, and Disposition

Baseline Characteristics at Enrollment	N=12			Enro
Age, mean (range), years	40.2 (27-55)			
Male, N (%)	8 (66.7)	Subjects #		ts #
African or African-American, N (%)	12 (100)			
Hydroxyurea use, N (%)	8 (66.7)		C	Com
L-glutamine use, N (%)	1 (8.3)			
Baseline Laboratory Measures	N=11*	Escalated to 1 (N=5)		
Hemoglobin, mean (SD), g/dL	9.5 (1.0)		(11	-3)
Abs reticulocyte count, mean (SD), K/µL	191.0 (109.3)	Subje		
Total bilirubin, mean (SD), mg/dL	2.2 (0.9)	# 8-12		
Lactate dehydrogenase, mean (SD), U/L	374.6 (140.9)	Completed		+ ad 1
Hemoglobin F % by HPLC, mean (SD), %	18.3 (10.7)		dose lev	
$\frac{10}{10}$	10.0 (10.1)	400		

* #4 withdrawn due to need for medical interventions for an AE unrelated to drug and lost to follow-up; not evaluable for laboratory response.

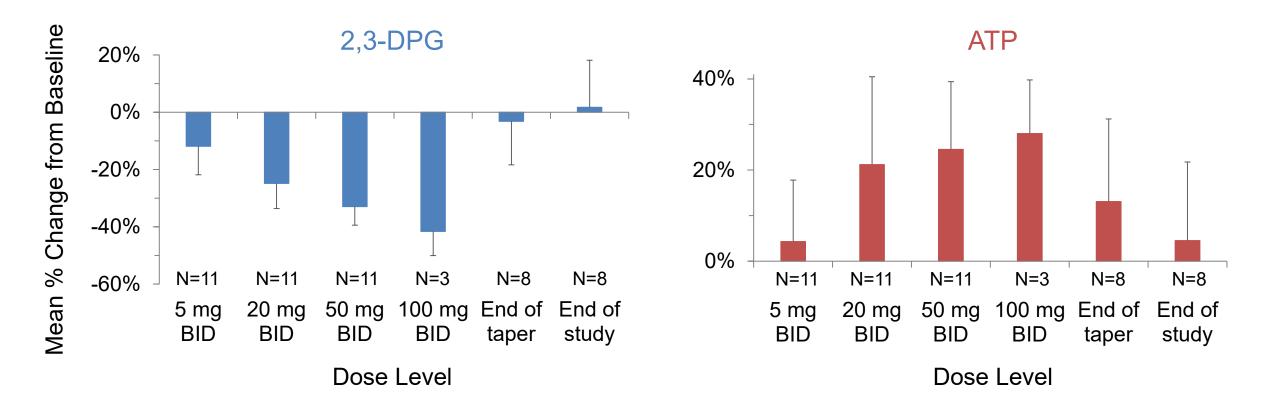
** #10 self-discontinued therapy due to an AE unrelated to drug; in safety follow-up.

AE, adverse event; Abs, absolute; HPLC, high-performance liquid chromatography; SD, standard deviation; Data cut date: Oct 6, 2020.

Consistent Safety Profile

	N=12 (%)	
Adverse Events	All Grades (≥10%)	Grade ≥ 3
Pain	4 (30.8%)	2 (15.4%)
Hyperglycemia	4 (30.8%)	0 (0%)
Vaso-occlusive crisis (VOC)	3 (23.1%)	3 (23.1%)
Anemia	3 (23.1%)	2 (15.4%)
Hypertension	3 (23.1%)	1 (7.7%)
Insomnia	3 (23.1%)	0 (0%)
Heart rate increased	3 (23.1%)	0 (0%)
AST increased	2 (15.4%)	0 (0%)
Blood bicarbonate decreased	2 (15.4%)	0 (0%)
Hyponatremia	2 (15.4%)	0 (0%)
Sore throat	2 (15.4%)	0 (0%)
Upper respiratory infection	2 (15.4%)	0 (0%)
Fatigue	1 (7.7%)	1 (7.7%)
Pulmonary embolism	1 (7.7%)	1 (7.7%)

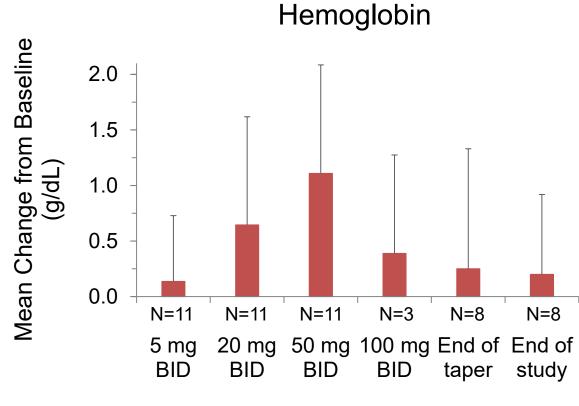
Serious Adverse Events (SAEs)	N=12 (%)
All	5 (41.7)
VOC*	3 (25)
Pain (shoulder)	1 (8.3)
Pulmonary embolism (PE)**	1 (8.3)


Summary of VOCs:

- No VOC during dose escalation
- 2 VOCs during 28-day safety follow-up post drug exposure due to known VOC triggers
- 1 VOC during drug taper, improved with extended dosing[†]
- * Regardless of relationship to study treatment.

** Pre-existing PE discovered 4 days after study drug initiation; patient withdrawn (subject #4). [†] Triggered protocol amendment to extend length of taper. AST, aspartate aminotransferase.

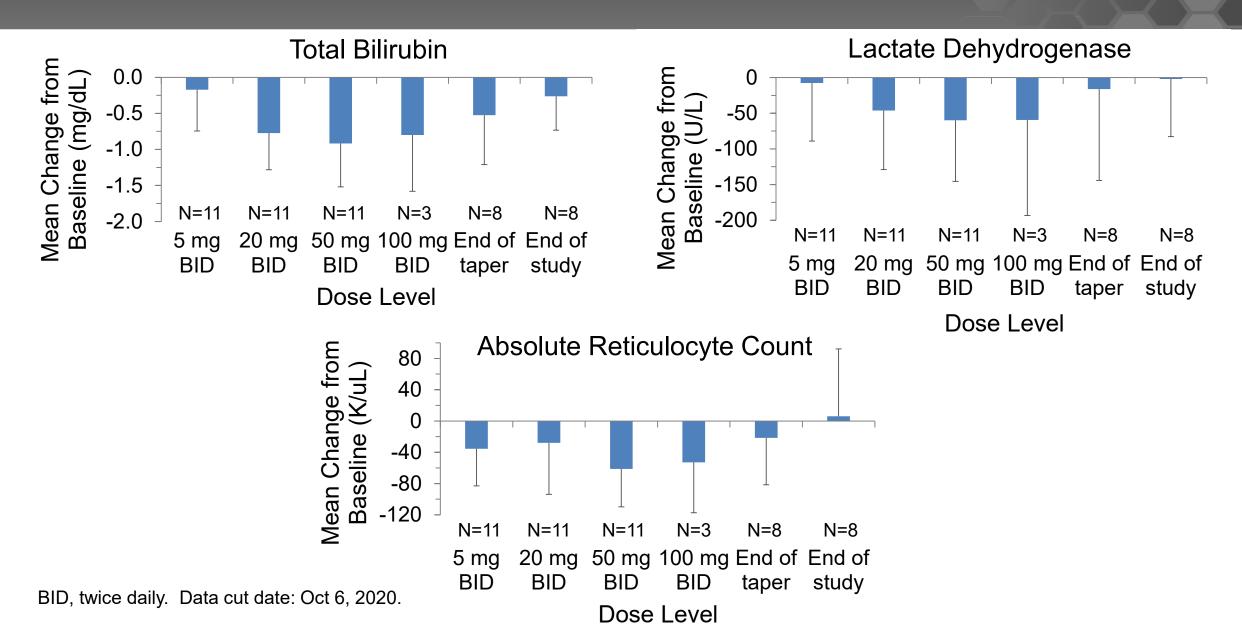
Data cut date: Oct 6, 2020.


Mitapivat Decreases 2,3-DPG and Increases ATP in SCD

- Linear PK was observed up to 50 mg BID.
- After 100 mg BID, CYP3A auto-induction effect resulted in ~20% reduction in exposure.

BID, twice daily; PK, pharmacokinetic. Data cut date: Oct 6, 2020.

Mitapivat Increases Hemoglobin Level



Dose	Level

Response parameter	N=11
Maximal Hb increase, mean (SD), g/dL	1.3 (0.8)
Hb increase ≥ 1g/dL, N (%)	6 (54.5)
Maximal Hb increase in subjects with ≥ 1g/dL response*, mean (SD), g/dL	1.9 (0.7)

* N=6. BID, twice daily. Data cut date: Oct 6, 2020.

Mitapivat Decreases Markers of Hemolysis

- Mitapivat, an oral, twice daily PKR activator was well tolerated in subjects with SCD.
- Pharmacokinetic and safety profile in SCD resembles results from previous studies in PK deficiency and thalassemia.
- This study provides proof of concept:
 - Mitapivat reduces 2,3-DPG and increases in ATP in patients with SCD.
 - During a short period (6-8 weeks) of dose escalation, mitapivat increased Hb by ≥ 1g/dl in 6/11 evaluable subjects and decreased hemolytic markers, signaling its potential to improve clinical outcomes in SCD.
- An extension study (ClinicalTrials.gov NCT04610866) will evaluate safety, tolerability, pharmacokinetics, and pharmacodynamics of longterm mitapivat dosing in SCD subjects enrolled on NCT04000165.

Acknowledgments

<u>NHLBI</u>

- Swee Lay Thein, MD, DSc
- Anna Conrey, NP
- Eveline Gwaabe, NP
- Ingrid Frey, RN
- Jim Nichols, RN
- Laurel Menapace, MD
- Neal Jeffries, PhD
- Lax Tumburu, PhD
- Tim Lequang, MS
- Maureen Lundt, MS

Agios Pharmaceuticals, Inc.

- Varsha Iyer, PhD
- Heidi Mangus, BS
- Charles Kung, PhD
- Lenny Dang, BA
- Penelope Kosinski, MS
- Peter Hawkins, PhD
- Thomas Winkler, MD
- Maggie Grasso, MD
- Keely Gilroy, PhD
- Sarah Gheuens, MD, PhD, MMSc

<u>NIDDK</u>

- William Eaton, MD, PhD
- Quan Li, PhD
- Emily Dunkelberger, PhD
- Eric Henry, PhD
- Troy Cellmer, PhD
- Kristen Glass, BA