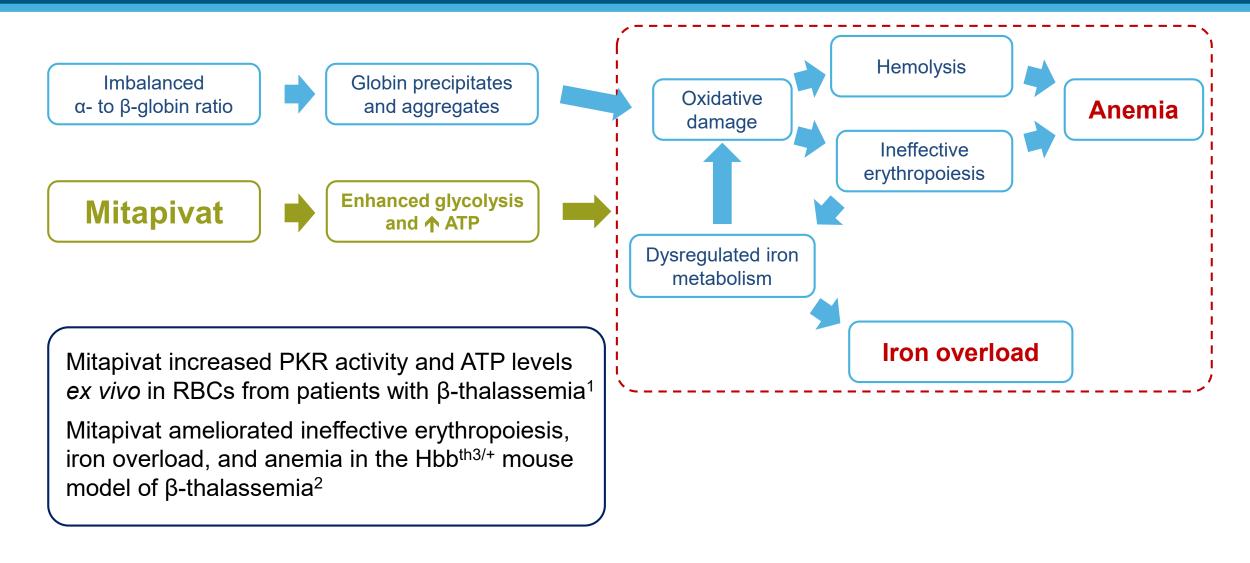

Proof of concept for the oral pyruvate kinase activator mitapivat in adults with non-transfusion-dependent thalassemia: Interim results from an ongoing, phase 2, open-label, multicenter study

Kevin H.M. Kuo, MD¹, D. Mark Layton, MB, BS², Ashutosh Lal, MD³, Hanny Al-Samkari, MD⁴, Feng Tai, PhD⁵, Megan Lynch, MSN⁵, Katrin Uhlig, MD⁵, Elliot P. Vichinsky, MD³

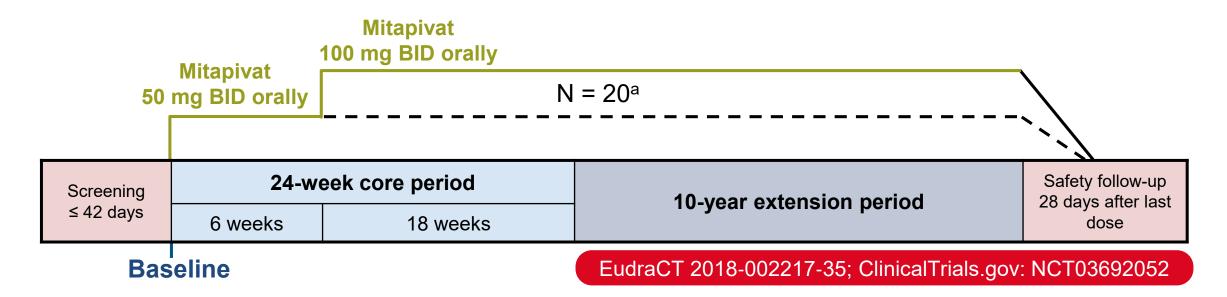
¹Toronto General Hospital, University Health Network, Toronto, Canada; ²Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; ³UCSF Benioff Children's Hospital Oakland, Oakland, CA, United States; ⁴Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; ⁵Agios Pharmaceuticals, Inc., Cambridge, MA, United States

Mitapivat

Mitapivat activates wild-type and mutant PKR enzymes¹



Mitapivat (AG-348) is an oral, allosteric activator of PKR, which catalyzes the final step of glycolysis in RBCs^{1,2}


- Mitapivat increased whole blood ATP levels by 60% in healthy volunteers³
- In a phase 2 study in adult patients with pyruvate kinase deficiency, BID dosing with mitapivat:
 - Increased Hb by > 1.0 g/dL in 50% of patients⁴
 - Was well tolerated for up to 42 months⁵

ADP = adenosine diphosphate; ATP = adenosine triphosphate; BID = twice daily; DPG = diphosphoglyceric acid; FBP = fructose 1,6–bisphosphate; Hb = hemoglobin; PEP = phosphoenolpyruvic acid; PG = phosphoglyceric acid; PK = pyruvate kinase; PKR = PK in RBCs; RBC = red blood cell.

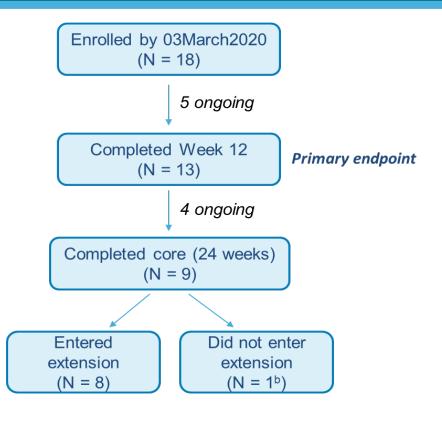
Hypothesis: Mitapivat mechanism in thalassemia

Study design: Open-label, phase 2, multicenter study

Key inclusion criteria

- β-thalassemia ± α-globin gene mutations,
 HbE β-thalassemia, or
 α-thalassemia (HbH disease)
- Hb ≤ 10.0 g/dL
- Non–transfusion-dependent^b

Primary endpoint^c


 Hb response, defined as increase of ≥ 1.0 g/dL from baseline at any time between Weeks 4–12, inclusive

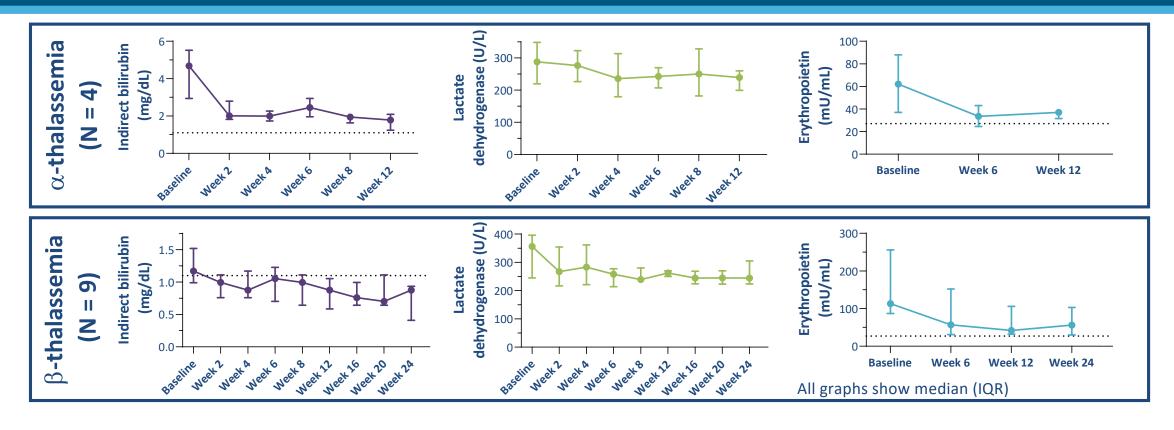
Secondary/exploratory endpoints

 Sustained Hb response; delayed Hb response; markers of hemolysis; hematopoietic activity; safety

Demographics and baseline characteristics

Baseline characteristics	Total (N = 18)
Median (range) duration of treatment, weeks	20.6 (1.1–50.0)
Male/female, n	5/13
Age at informed consent, median (range), years	43.5 (29–67)
Race, n (%) Asian White Native Hawaiian or other Pacific Islander Other ^a	9 (50.0) 4 (22.2) 1 (5.6) 4 (22.2)
Thalassemia type, n (%) α β	5 (27.8) 13 (72.2)
Hb baseline, median (range), g/dL	8.43 (5.6–9.8)
Indirect bilirubin, median (range), mg/dL	1.17 (0.31–5.52)
Lactate dehydrogenase, median (range), U/L	249 (126–513)
Erythropoietin, median (range), mU/mL	70.5 (15–11,191)

Key efficacy results


Primary endpoint was met in 92.3% of patients

Endpoint	Genotype	n/N	%	90% CI
Hb responders during Weeks 4–12 (completed 12 weeks)	All	12/13	92.3	68.4, 99.6
	α	4/4	100	47.3, 100
	β	8/9	88.9	57.1, 99.4
Hb responders during Weeks 12–24 (completed 24 weeks)	βa	8/9	88.9	57.1, 99.4
Sustained responders: primary response and ≥ 2 Hb responses during Weeks 12–24	βª	7/8	87.5	52.9, 99.4

Patient population	N	Weeks	Mean (SD) change from baseline Hb, g/dL
All patients	13	4–12	1.34 (0.7)
α-thalassemia	4	4–12	1.17 (0.4)
β-thalassemia	9	4–24	1.43 (0.8)

• Median (range) time to Hb increase of ≥ 1 g/dL among responders was 3.1 (1.4–7.1) weeks

Hb increases correlated with improvements in markers of hemolysis and erythropoiesis

 Mean ATP percent increase from baseline was similar to that previously observed with mitapivat in healthy volunteers¹

Safety summary^a

- Dose escalation to 100 mg BID was well tolerated and not associated with an increase in AEs
- The most common AEs (> 25% of patients) were insomnia (8/18) and dizziness (5/18)
- There were no serious AEs and no AEs leading to treatment discontinuation
- 1 AE leading to treatment interruption (grade 3, postural vertigo, not treatment-related)
- 1 AE leading to treatment modification (grade 2, bloating and heartburn, treatment-related)
- A previously reported serious AE of renal dysfunction (grade 3) that occurred post-data cut was re-adjudicated by the investigator from treatment-related to not treatment-related

Patients, n (%)	Total (N = 18)
Any AE	13 (72.2)
Any treatment-related AE	11 (61.1)
AEs by maximum severity Grade 1 Grade 2 Grade 3 ^b	4 (22.2) 7 (38.9) 2 (11.1)

Summary

- This is the first clinical study evaluating PKR activation as a therapeutic option in α- and βthalassemia, and is the first drug trial aimed at treating α-thalassemia
- Proof-of-concept was demonstrated
 - > 90% of patients met the primary endpoint showing a clinically significant Hb increase
 - All 4 α -thalassemia patients and 8 of 9 β -thalassemia patients were responders
 - A sustained Hb response was observed over time in patients with longer follow-up
 - Improvements in markers of hemolysis and erythropoiesis were consistent with mitapivat's mechanism of action
- Mitapivat was generally well tolerated; the safety profile was consistent with previous studies

These data indicate that activation of wild-type PKR by the oral agent mitapivat improved Hb and associated markers of hemolysis and erythropoiesis in patients with both α - and β -thalassemia, and that further investigation is warranted. Pivotal trials are in development

Acknowledgments and disclosures

- We would like to thank the patients taking part in this study
- This study was funded by Agios Pharmaceuticals, Inc. These data were previously presented at the 25th European Hematology Association (EHA) Annual Meeting, June 11–21, 2020
- Kevin H.M. Kuo Agios, Apellis, Bluebird Bio, Celgene, Pfizer consultant; Alexion, Novartis consultant, honoraria; Bioverativ data safety monitoring board member; Pfizer research support; D. Mark Layton Agios, Novartis consultant and advisory board member; Cerus data safety monitoring board member; Ashutosh Lal Bluebird Bio, Celgene, Insight Magnetics, La Jolla Pharmaceutical Company, Novartis, Protagonist Therapeutics, Terumo Corporations research funding; Agios, Chiesi USA consultancy; Celgene, Protagonist Therapeutics membership on an entity's Board of Directors or advisory committees; Hanny Al-Samkari Agios, Argenx, Dova, Rigel consultant; Agios, Dova, Amgen research funding; Feng Tai Agios employment and stockholder; Megan Lynch Agios employment and stockholder; Katrin Uhlig Agios employment and stockholder; Elliot P. Vichinsky GBT, Pfizer, Novartis, Bluebird Bio, Agios consultant and research funding
- Editorial assistance was provided by Julie B. Stimmel, PhD, Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.