## Results from a phase 2, open-label, multicenter study of the oral pyruvate kinase activator mitapivat in adults with non-transfusion-dependent alpha- or beta-thalassemia

**Kevin H.M. Kuo, MD,**<sup>1</sup> D. Mark Layton, MB BS,<sup>2</sup> Ashutosh Lal, MD,<sup>3</sup> Hanny Al-Samkari, MD,<sup>4</sup> Joy Bhatia, MD,<sup>5</sup> Bo Tong, PhD,<sup>5</sup> Megan Lynch, MSN,<sup>5</sup> Katrin Uhlig, MD,<sup>5</sup> Elliott P. Vichinsky, MD<sup>3</sup>

<sup>1</sup>Division of Hematology, University of Toronto, Toronto, Canada; <sup>2</sup>Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK; <sup>3</sup>UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA; <sup>4</sup>Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; <sup>5</sup>Agios Pharmaceuticals, Inc., Cambridge, MA, USA

#### Disclosures

- Kevin H.M. Kuo: Agios, Alexion, Apellis, bluebird bio, Celgene, Pfizer, Novartis consultancy; Alexion, Novartis honoraria;
  Bioverativ membership on an entity's Board of Directors or advisory committees; Pfizer research funding
- D. Mark Layton: Agios, Novartis consultancy; Agios, Cerus, Novartis membership on an entity's Board of Directors or advisory committees
- Ashutosh Lal: bluebird bio, Celgene, Insight Magnetics, La Jolla Pharmaceutical Company, Novartis, Protagonist Therapeutics, Terumo Corporations – research funding; Agios, Chiesi USA – consultancy; Celgene, Protagonist Therapeutics – membership on an entity's Board of Directors or advisory committees
- Hanny Al-Samkari: Agios, argenx, Dova, Novartis, Rigel, Sobi consultancy; Agios, Dova, Amgen research funding
- Joy Bhatia, Bo Tong, Megan Lynch, and Katrin Uhlig: Agios employees and shareholders
- Elliott P. Vichinsky: Agios, bluebird bio, Global Blood Therapeutics, Novartis, Pfizer consultancy and research funding
- This study was funded by Agios Pharmaceuticals, Inc. Medical writing assistance was provided by Onyx Medica, Knutsford, UK, funded by Agios Pharmaceuticals, Inc.

## Mitapivat is an investigational, first-in-class, oral, small-molecule allosteric activator of PK



- ATP generation is essential for RBC functioning and stability<sup>1,3</sup>
- Mitapivat activates PKR, which catalyzes the final step of glycolysis in RBCs<sup>2</sup>
- In studies in patients with PK deficiency or sickle cell disease, BID dosing with mitapivat improved anemia with an acceptable tolerability profile<sup>4–7</sup>

ADP = adenosine diphosphate; ATP = adenosine triphosphate; BID = twice daily; DPG = diphosphoglyceric acid; FBP = fructose 1,6-bisphosphate; PEP = phosphoenolpyruvic acid; PG = phosphoglyceric acid; PK = pyruvate kinase; PKR = PK in RBCs RBC = red blood cell.

Kung C et al. Blood 2017;130:1347-56;
 Yang H et al. Clin Pharmacol Drug Dev 2019;8:246-59;
 Valentini G et al. J Biol Chem 2002;277:23807-14;
 Grace RF et al. EHA Congress 2020, Abstract EP1561;
 Al-Samkari H et al. EHA Congress 2021. Abstract EHA-1873;
 Glenthøj A et al. EHA Congress 2021. Abstract EHA-2112;
 Xu JZ et al. ASH 2020. Abstract 681.

# Hypothesis: mitapivat mechanism in thalassemia via activation of wild-type PKR



## This phase 2, open-label, multicenter study investigated the efficacy and safety of mitapivat in non-transfusion-dependent $\alpha$ - and $\beta$ -thalassemia<sup>a</sup>

|                        | Mitanivat           | Mitapivat<br>100 mg BID orally |                          |                            |
|------------------------|---------------------|--------------------------------|--------------------------|----------------------------|
| 50 mg BID orally       |                     |                                | <u>N = 20</u>            | • • •                      |
| Correction             | 24-week core period |                                |                          | Safety follow-up           |
| Screening<br>≤ 42 days | 6 weeks             | 18 weeks                       | 10-year extension period | 28 days after last<br>dose |
|                        |                     |                                |                          |                            |

Baseline

#### Key inclusion criteria:

- β-thalassemia ± α-globin gene mutations,
  HbE β-thalassemia, or α-thalassemia (HbH disease)
- Hb ≤ 10.0 g/dL
- Non-transfusion-dependent<sup>b</sup>

#### Primary endpoint<sup>c</sup>

- · Hb response, defined as increase of
  - $\geq$  1.0 g/dL from baseline at any time between Weeks 4–12, inclusive

#### Secondary and exploratory endpoints

 Sustained Hb response; delayed Hb response; markers of hemolysis and erythropoiesis; safety

<sup>&</sup>lt;sup>a</sup>EudraCT 2018-002217-35, ClinicalTrials.gov: NCT03692052; <sup>b</sup> ≤ 5 RBC units transfused in the preceding 24 weeks and none in the 8 weeks prior to study drug; <sup>c</sup>With the originally planned sample size of 17 patients, the study would have 80% power to reject a ≤ 30% response rate at a 1-sided 0.05 type 1 error rate.

BID = twice daily; dL = deciliter; Hb = hemoglobin; HbE = hemoglobin E; HbH = hemoglobin H; RBC = red blood cell.

### Patient demographics and baseline characteristics

| Patient demographics<br>and BL characteristics                                                         | All patients<br>(N = 20)                  | Genotype                                                    | Patients<br>(N = 18) <sup>a</sup> |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------|
| Completed 24-week core treatment period, n (%)                                                         | 19 (95)                                   |                                                             |                                   |
| Sex, n (%)                                                                                             |                                           | β-thalassemia, n (%)                                        |                                   |
| Male<br>Female                                                                                         | 5 (25.0)<br>15 (75.0)                     | Intermedia $+ \alpha$ duplication                           | 6 (33.3)<br>3 (16 7)              |
| Age, median (range), years                                                                             | 44.0 (29–67)                              | Trait/phenotypic ß-thalassemia intermedia                   | 2 (11 1)                          |
| Race, n (%)                                                                                            |                                           |                                                             | 2(11.1)                           |
| Asian<br>White<br>Block or African American                                                            | 10 (50.0)<br>4 (20.0)                     | HbE/β-thalassemia, n (%)<br>HbE/β <sup>0</sup>              | 2 (11.1)                          |
| Native Hawaiian or other Pacific Islander<br>American Indian or Alaska Native<br>Other<br>Not reported | 1 (5.0)<br>1 (5.0)<br>3 (15.0)<br>1 (5.0) | <b>α-thalassemia, n (%)</b><br>Deletional<br>Non-deletional | 2 (11.1)<br>3 (16.7)              |
| Thalassemia type, n (%)                                                                                | . (0.0)                                   |                                                             |                                   |
| α-thalassemia<br>β-thalassemia                                                                         | 5 (25%)<br>15 (75%)                       |                                                             |                                   |
| Hb baseline, median (range), g/dL                                                                      | 8.43 (5.13–9.80)                          |                                                             |                                   |
| Total bilirubin, median (range), µmol/L                                                                | 31.00 (8.6–90.0)                          |                                                             |                                   |
| LDH, median (range), U/L                                                                               | 249.00 (126.0–513.0)                      |                                                             |                                   |
| Erythropoietin, median (range), IU/L                                                                   | 79.00 (15.0–11191.0)                      |                                                             |                                   |

<sup>a</sup>Genotype data is unknown for 2 patients.

AE = adverse event; BL = baseline; Hb = hemoglobin; HbE = hemoglobin E; IU = international units; LDH = lactate dehydrogenase; U = units.

### Mitapivat met the primary endpoint of a Hb response in 80% of patients



Hb response

NB: Primary endpoint; Hb response, defined as a ≥1.0 g/dL increase in Hb concentration from baseline at 1 or more assessments between Week 4 and Week 12 (inclusive).

<sup>a</sup>1-sided p-value based on Clopper-Pearson method.

BL = baseline; CI = confidence interval; Hb = hemoglobin.

## Secondary endpoints: sustained Hb response and consistent increases in mean Hb



**Sustained Hb response** 

#### **Sustained Hb response:**

A primary endpoint response during Weeks 4–12 and a  $\geq$  1.0 g/dL increase in Hb concentration at  $\geq$  2 assessments between Weeks 12 and 24





#### Mean Hb change:

Mean change from BL in Hb concentrations over a 12-week interval from Weeks 12 and 24

## Improvements in Hb were rapid and maintained over the duration of the core treatment period



• Mean (SD) time to first Hb increase of  $\geq$  1 g/dL among responders was 4.5 (3.2) weeks

NB: Mean change from baseline in Hb concentrations over a continuous 12-week interval from Week 12 to Week 24 BID = twice daily; Hb = hemoglobin; SD = standard deviation.

## Treatment with mitapivat improved markers of hemolysis and erythropoiesis in both $\alpha$ - and $\beta$ -thalassemia



\*Non-responder (purple line). <sup>a</sup>Week 24 data are missing for four of the five  $\alpha$ -thalassemia patients, due to COVID-19.

NB: Predefined secondary endpoints, mean (SD) values of markers of hemolysis: bilirubin, LDH, and mean (SD) values of markers of erythropoietic activity: erythropoietin.

BL = baseline; EPO = erythropoietin; Hb = hemoglobin; IU = international units; LDH = lactate dehydrogenase; SD = standard deviation; U = units; µmol = micromole.

# Improvements in ATP support mitapivat's proposed mechanism of action in thalassemia

| Treatment dose | Visit            | Mean (CV%) ATP change from baseline in blood, % |
|----------------|------------------|-------------------------------------------------|
| 50 mg BID      | Week 6 (n = 11)  | 78.2 (82.7)                                     |
| 100 mg BID     | Week 8 (n = 12)  | 72.7 (67.9)                                     |
| 100 mg BID     | Week 12 (n = 12) | 86.7 (68.7)                                     |
| 100 mg BID     | Week 24 (n = 8)  | 61.6 (62.7)                                     |

 Mean ATP percent increase from baseline was similar to that previously observed with mitapivat in healthy volunteers<sup>1</sup>

NB: Exploratory endpoint, change from baseline in ATP ATP = adenosine triphosphate; BID = twice daily; CV = coefficient of variation. **1.** Yang H et al. *Clin Pharmacol Drug Dev* 2019;8:246–59.

#### **Common treatment-emergent adverse events reported**

| Most common TEAEs                 | All patients (N = 20) |  |
|-----------------------------------|-----------------------|--|
| (any grade in ≥ 15% of patients)  | Any grade, n (%)      |  |
| Patients with events              | 17 (85.0)             |  |
| Initial insomnia                  | 10 (50.0)             |  |
| Dizziness                         | 6 (30.0)              |  |
| Headache                          | 5 (25.0)              |  |
| Cough                             | 4 (20.0)              |  |
| Dyspepsia                         | 4 (20.0)              |  |
| Fatigue                           | 4 (20.0)              |  |
| Nasal congestion                  | 4 (20.0)              |  |
| Upper respiratory tract infection | 4 (20.0)              |  |
| Abdominal pain                    | 3 (15.0)              |  |
| Diarrhea                          | 3 (15.0)              |  |
| Ocular icterus                    | 3 (15.0)              |  |
| Pain                              | 3 (15.0)              |  |
| Pain in extremity                 | 3 (15.0)              |  |
| Abdominal distension              | 3 (15.0)              |  |
| Nausea                            | 3 (15.0)              |  |
| Oropharyngeal pain                | 3 (15.0)              |  |

MedDRA version 23.0 and CTCAE version 4.03 were used.

CTCAE = Common Terminology Criteria for Adverse Events; MedDRA = Medical Dictionary for Medical Regulatory Activities; TEAE = treatment-emergent adverse event.

### Safety summary

| All patients (n = 20)                | Patients,<br>n (%) | TEAEs <sup>a</sup>                                                                                                       |
|--------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| Treatment-related TEAEs              | 13 (65.0)          | Initial insomnia (n = 10), diarrhea (n = 3), dyspepsia (n = 3), abdominal distension (n = 3), nausea (n = 3)             |
| Grade ≥ 3 TEAEs                      | 5 (25.0)           | Initial insomnia (n = 1), arthralgia (n = 1),<br>renal impairment (n = 1), anemia (n = 1),<br>vertigo positional (n = 1) |
| Grade ≥ 3 treatment-related<br>TEAEs | 1 (5.0)            | Initial insomnia (grade 3)                                                                                               |
| Serious TEAEs                        | 1 (5.0)            | Renal impairment (grade 3)                                                                                               |
| TEAEs leading to study drug:         |                    |                                                                                                                          |
| Dose reduction                       | 3 (15.0)           | Abdominal distension and dyspepsia (both grade 2), initial insomnia (grade 3), renal impairment (grade 3)                |
| Interruption                         | 1 (5.0)            | Vertigo positional (grade 3)                                                                                             |
| Discontinuation                      | 1 (5.0)            | Renal impairment (grade 3)<br>Patient discontinued after the Week 4 visit                                                |

- The adverse event leading to study drug discontinuation was not treatment related
- There were no deaths during the study

13

Patients with multiple adverse events within a PT are counted only once in that PT; for patients with multiple occurrences of an adverse event, the adverse event with the worst CTCAE grade is included in the summary; MedDRA version 23.0 and CTCAE version 4.03 were used.

<sup>a</sup>TEAEs 20% listed for 'any TEAEs'; 20% listed for 'treatment-related TEAEs'; all TEAEs listed for other sections. CTCAE = Common Terminology Criteria for Adverse Events; MedDRA = Medical Dictionary for Medical Regulatory Activities; PT = preferred term; TEAE = treatment-emergent adverse event.

### Conclusions

- This is the first clinical study evaluating PKR activation as a therapeutic option in α- and β-thalassemia, and is the first drug trial aimed at evaluating treatment in α-thalassemia
- The study met its primary endpoint, and demonstrated a sustained Hb response and improvements in hemolysis and ineffective erythropoiesis in patients with α- and β-thalassemia
- Mitapivat was well tolerated; the safety profile was consistent with previous studies
  - 17 patients continued to the extension period of the study and, as of 29 April 2021, 16 patients remain on study drug
- Mitapivat, through activation of wild-type PKR, may represent a novel therapeutic option for patients with α- or β-thalassemia
  - Two pivotal phase 3 trials, ENERGIZE (NTDT) and ENERGIZE-T (TDT), for patients with  $\alpha$  or β-thalassemia will be initiated in 2021

### Acknowledgements

- We would like to thank the patients taking part in this study
- This study was funded by Agios Pharmaceuticals, Inc.
- Editorial assistance was provided by Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.