AGILE: A phase 3, multicenter, double-blind, randomized, placebo-controlled study of ivosidenib in combination with azacitidine in adult patients with previously untreated acute myeloid leukemia with an IDH1 mutation

Pau Montesinos Fernandez¹, Christian Recher², Vadim Doronin³, Rodrigo T Calado⁴, Jun Ho Jang⁵, Yasushi Miyazaki⁶, Jianxiang Wang⁷, Diego A Gianolio⁸, Scott R Daigle⁸, Thomas Winkler⁸, Vickie Zhang⁸, Peter Paschka⁹

¹Hospital Universitari i Politècnic La Fe, València, Spain; ²Institut Universitaire du Cancer de Toulouse Oncopole, CHU de Toulouse and Université de Toulouse, France; ³City Clinical Hospital # 40, St. Petersburg, Russian Federation; ⁴Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil; ⁶Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁶Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; ⁷Institute of Hematology & Hospital of Blood Disease – Peking Union Medical College, Beijing, China; ⁸Agios Pharmaceuticals, Inc., Cambridge, MA, USA; ⁹University of Ulm, Ulm, Germany

BACKGROUND

IDH1 mutations and ivosidenib

- · Acute myeloid leukemia (AML) has a poor prognosis, and is associated with a high risk of relapse and limited overall survival.1-3
- · Advanced age and comorbidities often preclude curative treatment approaches in elderly patients with AML.
- Mutations in isocitrate dehydrogenase 1 (IDH1) occur in ~6–10% of AML cases.4
- The mutant IDH1 (mIDH1) enzyme has gain-of-function activity, which catalyzes the reduction of alpha-ketoglutarate (α -KG) to the oncometabolite D-2-hydroxyglutarate (2-HG).8
- · 2-HG accumulation results in metabolic dysregulation and inhibition of α -KG–dependent enzymes, causing epigenetic dysregulation and a block in cellular differentiation, leading to oncogenesis.9
- Ivosidenib (AG-120) is a first-in-class, oral, potent, targeted, small-molecule inhibitor of the mIDH1 enzyme that is being tested in multiple clinical studies.
- · Ivosidenib is approved in the US for the treatment of AML with a susceptible IDH1 mutation as detected by an FDA-approved test in adults with newly diagnosed AML who are ≥75 years of age or who have comorbidities that preclude the use of intensive induction chemotherapy and in adults with relapsed or refractory AML.
- In a phase 1 study of patients with mIDH1 advanced hematologic tumors, including AML (NCT02074839), ivosidenib showed robust clinical activity and a manageable safety profile as a single agent.
- The overall response rate (ORR) was 54.5% and the complete remission (CR) rate was 30.3% in patients with newly diagnosed m/DH1 AML not eligible for intensive chemotherapy.12

Preclinical rationale for combining ivosidenib and azacitidine

- The hypomethylating agent azacitidine is a treatment option for patients with AML who are unable to tolerate intensive induction chemotherapy.
- Azacitidine treatment has been found to prolong overall survival versus conventional care regimens in older patients with newly diagnosed AML.13
- In a preclinical study using an mIDH1 cell-line model, concurrent treatment with ivosidenib and azacitidine resulted in enhanced cellular differentiation and apoptosis compared with either agent alone.14

Preliminary evidence for the safety and efficacy of the ivosidenib and azacitidine combination

Study design and methods

- A phase 1b study of ivosidenib in combination with azacitidine in patients with untreated mIDH1 AML is ongoing (NCT02677922).
- Demographics: median age 76 years (range 61–88), 12 patients (52%) were ≥75 years of age, and 12 of 23 were female. De novo and secondary AML were present in 15 (65%) and 8 (35%) patients, respectively. Cytogenetic risk status was intermediate in 65%, poor in 22%, and failed/missing in 13%.
- 23 patients were treated with ivosidenib 500 mg once daily (QD) + azacitidine 75 mg/m²/day subcutaneously (SC) on Days 1-7 in a 28-day schedule.15

Results

- · As of February 19, 2019, 10 patients (43.5%) remained on study treatment. Patients had been treated for a median of 15 cycles (range, 1–30), and adverse events were consistent with the single-agent experience for both agents. Four cases of IDH differentiation syndrome were reported; of these, three were deemed to be serious adverse events, but all four cases resolved.
- Objective responses were observed in 18 of 23 (78.3%) patients, with 14 (60.9%) achieving a CR and 2 (8.7%) achieving CR with partial hematologic recovery (CRh) (Figure 1 and Table 1).
- Preliminary m/DH1 clearance in bone marrow mononuclear cells was observed in 69% of patients (11 of 16) with CR or CRh, including 71% (10 of 14) with CR (Table 2).

Table 1. Phase 1b study: response rates

Response parameter	All patients N=23
CR, n (%) [95% CI]	14 (60.9) [38.5, 80.3]
Time to CR, median (range), months	3.7 (0.8–15.7)
Duration of CR, median [95% CI], months	NE [9.3, NE]
CR+CRh,ª n (%) [95% CI]	16 (69.6) [47.1, 86.8]
Time to CR+CRh, median (range), months	2.8 (0.8–11.5)
Duration of CR+CRh, median [95% CI], months	NE [12.2, NE]
CRh, n (%)	2 (8.7)
ORR, n (%) [95% CI]	18 (78.3) [56.3, 92.5]
Time to response, median (range), months	1.8 (0.7–3.8)
Duration of response, median [95% CI], months	NE [10.3, NE]
Best response ^b	
CR, n (%) [95% CI]	14 (60.9) [38.5, 80.3]
CRi/CRp, n (%)	2 (8.7)
MLFS, n (%)	2 (8.7)
Overall survival, 12-month rate, % [95% CI] ^c	82.0 [58.8, 92.8]
Duration of follow-up, median (range), months	16.1 (1.3–31.7)
"Sponsor derived	

Modified International Working Group criteria

Determined using Kaplan-Meier method Ri/CRp = CR with incomplete hematologic or platelet recovery; MLFS = morphologic leukemia-free state; NE = not estimable

"Patient continued on commercially available livesidenib "Patient had m/DH1 clearance in PBMCs only (BMMCs not available); all other patients had m/DH1 clearance in both BMMCs and PBMCs "Only deaths occurring within 60 days of last dose were included BMMCs = bone marrow mononuclear cells; HSCT = hematopoietic stem cell transplant; NA = not assessed; PBMCs = peripheral blood mor cells; RP = partial remission; SD = stable disease

Table 2. Phase 1b study: IDH1 mutation clearance^a by best overall response (BEAMing digital PCR)

	BMMCs⁵ n=21	PBMCs N=23
-	n/N (%)	
CR/CRh	11/16 (69)	12/16 (75)
CR	10/14 (71)	11/14 (79)
CRh	1/2 (50)	1/2 (50)
Non-CR/CRh responders	1/2 (50)	1/2 (50)
Nonresponders	0/3 (0)	0/5 (0)

eduction in m/DH1 variant allele frequency to below the limit of detection of 0.02–0.04% (2–4 × 10⁻⁴) for at least one on-study timepoin o nonresponding patients had variant allele frequency data available from PBMCs on

· See Poster 2706 (Daigle et al.) in Session 617 for additional molecular data.

OBJECTIVE OF PHASE 3 AGILE STUDY

· To evaluate the efficacy and safety of ivosidenib + azacitidine versus placebo + azacitidine in adults with previously untreated mIDH1 AML who are not candidates for intensive treatment.

PHASE 3 AGILE STUDY DESIGN

- AGILE is a global, phase 3, multicenter, randomized, double-blind. placebo-controlled trial in adult patients with previously untreated mIDH1 AML who are not candidates for intensive therapy. - ClinicalTrials.gov NCT03173248
- · Study design is shown in Figure 2
- · Central or local confirmation of mIDH1 status is required for study entry.
- · An independent data monitoring committee will monitor the data throughout the study.

SUMMARY AND CURRENT STATUS

- The favorable safety profile and encouraging clinical activity observed in the phase 1b ivosidenib + azacitidine combination study of the treatment of mIDH1 AML (CR rate 60.9% and CRh rate 8.7%) support the development of this combination in the phase 3 AGILE study.
- The active phase 3 AGILE study is currently recruiting in 20 countries, with a total of 172 study centers in North America, South America, Asia, and Europe participating in the study.
- Further information is available at https://clinicaltrials.gov/ct2/show/ NCT03173248.
- · Contact medinfo@agios.com.

Acknowledgments

We would like to thank the patients taking part in this study.

Disclosures

This study is funded by Agios Pharmaceuticals, Inc.

PMF: AbbVie, Celgene, Daiichi Sankyo, Incyte, Janssen, Karyopharm, Novartis, Pfizer, Teva board of directors/advisory committee member; Celgene, Daiichi Sankyo - consultant; Celgene, Daiichi Sankyo, Janssen, Karyopharm, Novartis, Pfizer, Teva - research funding; Celgene, Daiichi Sankyo, Incyte, Janssen, Novartis, Pfizer, Teva - speakers bureau member. CR: AbbVie, Daiichi Sankyo, Jazz - honoraria; AbbVie, Amgen, Astellas, Daiichi Sankyo, Jazz - board of directors/ advisory committee member; Agios, Amgen, Astellas, Celgene, Chugai, Daiichi Sankyo, Jazz research funding; Amgen, Daiichi Sankyo, Jazz - consultant. VD, RTC, and JHJ: no conflict of interest to disclose. YM: Chugai - research funding; Dainippon-Sumitomo, Kyowa-Kirin, Nippon-Shinyaku, Novartis, Otsuka - honoraria. JW: Celgene - research funding. DAG, SRD, TW, and VZ: Agios - employment and stockholder. PP: Agios, Astellas, Astex, Celgene, Jazz, Novartis, Otsuka, Pfizer, Sunesis - board of directors/advisory committee member; AbbVie, Amgen, Astex, BMS, Celgene, Janssen, Novartis, Takeda – travel expenses; BMS, Celgene, Jazz, Novartis, Pfizer speakers bureau member.

Editorial assistance was provided by Helen Varley, PhD, CMPP, Excel Medical Affairs, Horsham, UK, and supported by Agios.

References

1. Walter RB et al. Leukemia 2015;29:312-20. 2. NCI SEER Cancer Stat Facts - Acute Myeloid Leukemia, https://seer.cancer.gov/statfacts/html/amvl.html, Accessed Mar 14, 2018, 3, Mangan J Luger S. Ther Adv Hematol 2011:2:73-82. 4. Mardis ER et al. N Engl J Med 2009:361:1058-66.

5. Ward PS et al. Cancer Cell 2010;17:225-34. 6. Patel KP et al. Am J Clin Pathol 2011;135:35-45. 7. DiNardo CD et al. Am J Hematol 2015;90:732-6. 8. Dang L et al. Nature 2009;462:739-44. 9. Lu C et al. Nature 2012;483:474-8. 10. Saha SK et al. Nature 2014;513:110-4. 11. Xu W et al. Cancer Cell 2011;19:17-30. 12. Roboz GJ et al. Blood 2019: accepted.13. Dombret H et al. Blood 2015;126:291-9. 14. Yen K et al. 2018 AACR Annual Meeting: Abstr 4956. 15. DiNardo CD et al. Clin Lymphoma Myeloma Leuk 2019;19(Suppl 1):S217-8. Abstr AML-197.

2593