

Proof of concept for the oral pyruvate kinase activator mitapivat in adults with non-transfusion-dependent thalassemia: Interim results from an ongoing, phase 2, open-label, multicenter study

EHA25 VIRTUAL

Kevin HM Kuo¹, D Mark Layton², Ashutosh Lal³, Hanny Al-Samkari⁴, Feng Tai⁵, Megan Lynch⁵, Katrin Uhlig⁵, Elliot P Vichinsky³

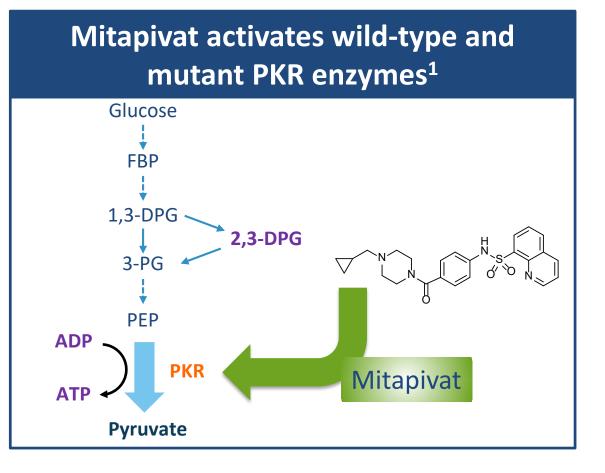
¹Toronto General Hospital, University Health Network, Toronto, ON, Canada; ²Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK; ³UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA; ⁴Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ⁵Agios Pharmaceuticals, Inc., Cambridge, MA, USA

> 12 June 2020 S297: New therapeutic approaches for thalassemia

Disclosures

This study was funded by Agios Pharmaceuticals, Inc. We would like to thank the patients taking part in this study.

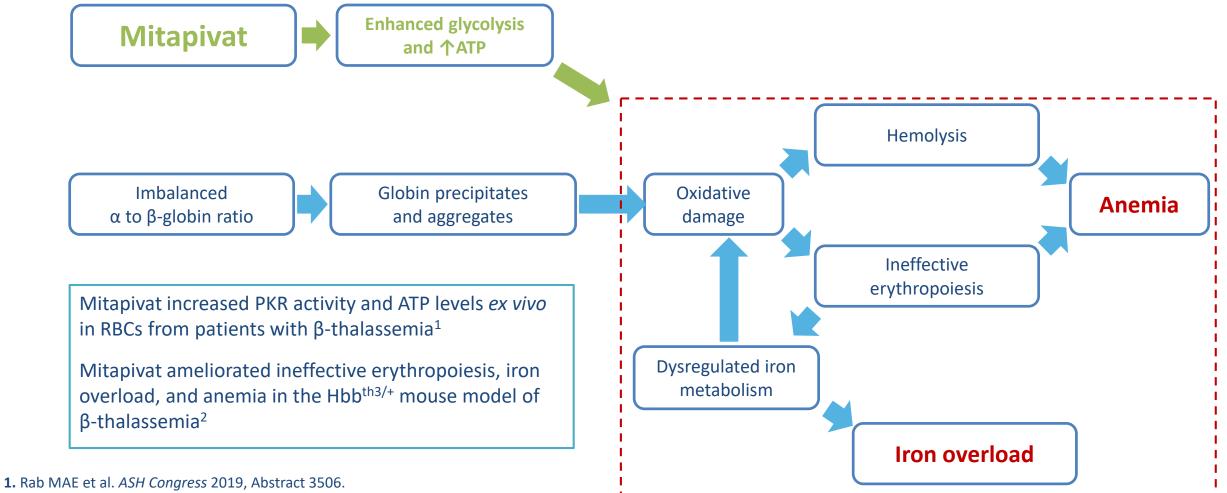
Kevin HM Kuo – Agios, Apellis, Bluebird Bio, Celgene, Pfizer – consultant; Alexion, Novartis – consultant, honoraria; Bioverativ – data safety monitoring board member; Pfizer – research support. D Mark Layton – Agios, Novartis – consultant and advisory board member; Cerus – data safety monitoring board member. Ashutosh Lal – none. Hanny Al-Samkari – Agios, Dova, Moderna – consultant; Agios, Dova, Amgen – research funding. Feng Tai, Megan Lynch, and Katrin Uhlig – Agios – employment and stockholder. Elliot P Vichinsky – GBT, Pfizer, Novartis, Bluebird Bio, Agios – consultant and research funding


Editorial assistance was provided by Christine Ingleby, PhD, CMPP, Excel Medical Affairs, Horsham, UK, and supported by Agios

12 June 2020 S297: New therapeutic approaches for thalassemia

Mitapivat

- Mitapivat (AG-348) is an investigational, first-in-class, oral, small-molecule allosteric activator of pyruvate kinase (PK)R¹, which catalyzes the final step of glycolysis in RBCs²
- Mitapivat increased RBC ATP levels by 60% in healthy volunteers³
- In a phase 2 study in adult patients with PK deficiency, BID dosing with mitapivat:
 - Increased hemoglobin (Hb) by > 1.0 g/dL in 50% of patients⁴
 - Was well tolerated for up to 42 months⁵


ATP = adenosine triphosphate; BID = twice daily; RBC = red blood cell

1. Kung C et al. Blood 2017;130:1347. 2. Valentini G et al. J Biol Chem 2002;277:23807. 3. Yang H et al. Clin Pharmacol Drug Dev 2019;8:246.

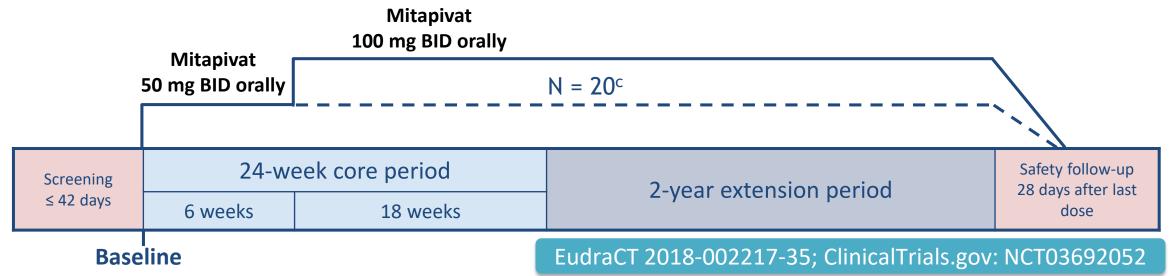
4. Grace RF et al. NEJM 2019;381:933. 5. Grace RF et al. EHA Congress 2020, Abstract EP1561

Hypothesis: Mitapivat mechanism in thalassemia

2. Matte A et al. EHA Congress 2016, Abstract S135.

Study design: Open-label, phase 2, multicenter study

Key Inclusion Criteria

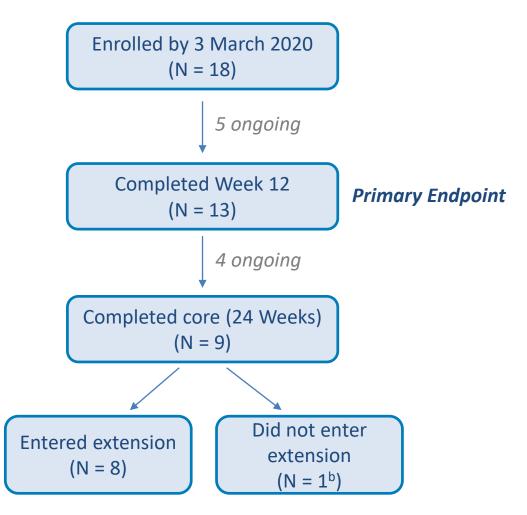

- β-thalassemia ± α-globin gene mutations,
 HbE β-thalassemia, or α-thalassemia
 (HbH disease)
- Hb ≤ 10.0 g/dL
- Non–transfusion-dependent^a

Primary Endpoint^b

 Hb response, defined as increase of ≥ 1.0 g/dL from baseline at any time between weeks 4–12, inclusive

Secondary/Exploratory Endpoints

 Sustained Hb response; delayed Hb response; markers of hemolysis; hematopoietic activity; safety


^a ≤ 5 RBC units transfused in the preceding 24 weeks and none in the 8 weeks prior to study drug. ^bWith the originally planned sample size of 17 patients enrolled, the study would have 80% power to reject a ≤ 30% response rate at a one-sided 0.05 type 1 error rate. ^cFully enrolled. BID = twice daily

Demographics and disposition

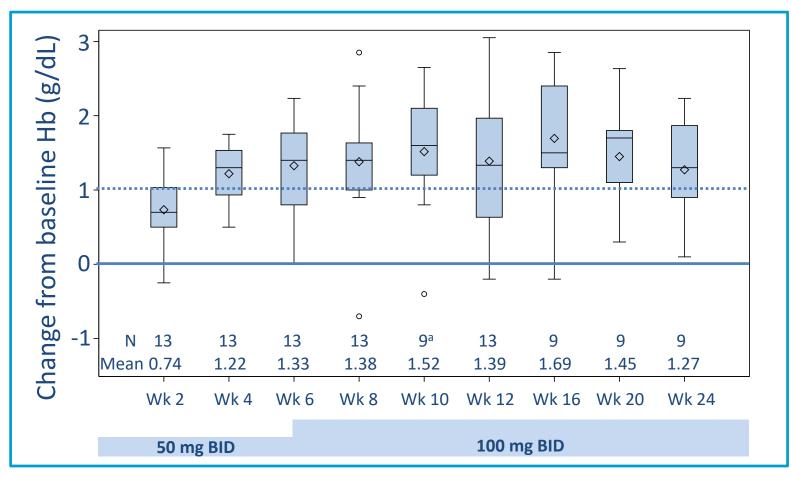
Baseline characteristics	Total (N = 18)
Median (range) duration of treatment, weeks	20.6 (1.1–50.0)
Male/female, n	5/13
Age at informed consent, median (range), years	43.5 (29–67)
Race, n (%) Asian White Native Hawaiian or other Pacific Islander Other ^a	9 (50.0) 4 (22.2) 1 (5.6) 4 (22.2)
Thalassemia type, n (%) α β	5 (27.8) 13 (72.2)
Hb baseline, median (range), g/dL	8.43 (5.6–9.8)
Indirect bilirubin, median (range), mg/dL	1.17 (0.31–5.52)
Lactate dehydrogenase, median (range), U/L	249 (126–513)
Erythropoietin, median (range), mU/mL	70.5 (15–11,191)

Key efficacy results

Primary endpoint was met in 92.3% of patients

Endpoint	Genotype	N/N	%	90% CI
Hb responders during weeks 4–12 among those who completed 12 weeks	All	12/13	92.3	68.4, 99.6
	α	4/4	100	47.3, 100
	β	8/9	88.9	57.1, 99.4
Hb responders during weeks 12–24 among those who completed 24 weeks	β ^a	8/9	88.9	57.1, 99.4
Sustained responders: primary response and ≥ 2 Hb responses during weeks 12–24	β ^a	7/8	87.5	52.9, 99.4

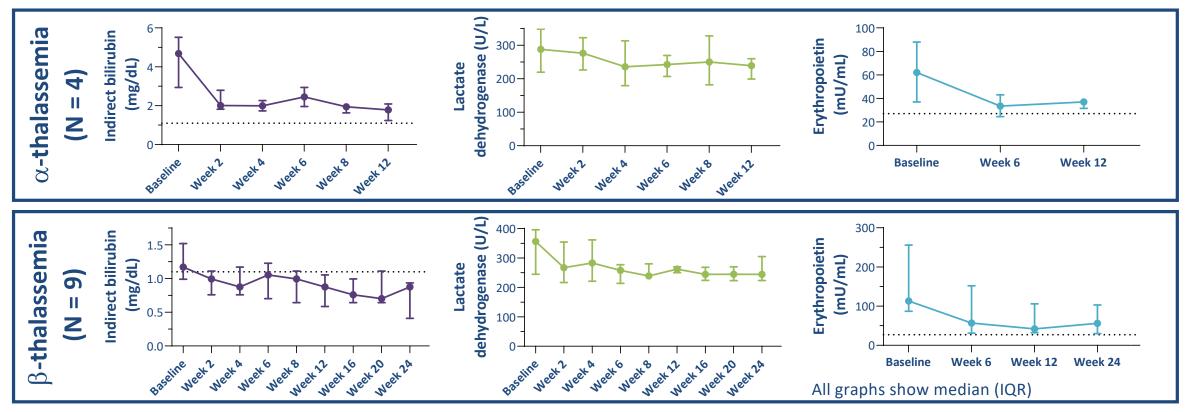
Hb responder defined as a \geq 1.0 g/dL Hb increase from baseline at least once ^aOnly patients with β -thalassemia had completed 24 weeks of treatment at the time of datacut


Hemoglobin change from baseline

Patient population	Ν	Weeks	Mean (SD) change from baseline Hb, g/dL
All patients	13	4–12	1.34 (0.7)
α-thalassemia	4	4–12	1.17 (0.4)
β-thalassemia	9	4–24	1.43 (0.8)

Median (range) time to Hb increase of ≥ 1 g/dL among responders was 3.1 (1.4–7.1) weeks

Hemoglobin change over time



Solid blue line indicates baseline, dashed blue line indicates Hb change required for primary endpoint. Boxes represent interquartile range, lines indicate medians, diamonds indicate means, whiskers and outliers (circles) calculated with Tukey's method. ^a4 patients were not evaluated at Week 10 due to a protocol amendment eliminating this visit Wk = week

Markers of hemolysis and erythropoiesis

The improvements in these markers correlated with the Hb increases

Dashed lines indicate upper limit of normal range. For α -thalassemia: N = 4 for lactate dehydrogenase and erythropoietin, for indirect bilirubin N = 3 at baseline, weeks 2, 8 and 12, and N = 2 at weeks 4 and 6; for β -thalassemia: N = 9 for erythropoietin, for lactate dehydrogenase N = 9 at baseline, weeks 6, 8, 12, and 20 and N = 8 at weeks 2, 4, 16, and 24, for indirect bilirubin N = 9 at baseline and N = 7 at the remaining times. IQR = interquartile range (25th-75th centiles)

ATP change with mitapivat

 Mean ATP percent increase from baseline was similar to that previously observed with mitapivat in healthy volunteers¹

Treatment dose	Visit	Mean (CV%) ATP change from baseline in blood, %
50 mg	Week 6 (n = 9)	82.7 (85.8)
100 mg	Week 8 (n = 12)	76.8 (62.7)
100 mg	Week 12 (n = 12)	86.7 (68.7)
100 mg	Week 24 (n = 5)	92.3 (71.6)

Safety summary^a

	Total (N = 18)
Patients with any AE, n (%)	13 (72.2)
Patients with any related AE, n (%)	11 (61.1)
Patients with AEs by maximum severity, n (%) Grade 1 Grade 2 Grade 3 ^b	4 (22.2) 7 (38.9) 2 (11.1)

AEs coded using MedDRA, version 22.0 ^aAs of datacut of 3 March 2020 ^bNeither were judged related There were no serious adverse events (AEs) and no AEs leading to treatment discontinuation as of the datacut

EHA25 VIRTUAL

- Dose escalation to 100 mg BID was well tolerated and not associated with an increase in AEs
- Reported in one patient each:
 - AE leading to treatment interruption (grade 3, postural vertigo, not related)
 - AE leading to treatment modification (grade 2, bloating and heartburn, related)
- Post-datacut, one serious AE of renal dysfunction was reported, which resolved upon treatment discontinuation (grade 3, judged related by investigator)

Most common AEs^a

AEs in ≥ 2 patients, number of patients (%)	Total (N = 18)
Insomnia	8 (44.4)
Dizziness	5 (27.8)
Cough	4 (22.2)
Dyspepsia	4 (22.2)
Fatigue	4 (22.2)
Headache	4 (22.2)
Nasal congestion	4 (22.2)
Nausea	4 (22.2)
Upper respiratory tract infection	4 (22.2)
Abdominal distension	3 (16.7)
Diarrhea	3 (16.7)
Ocular icterus	3 (16.7)
Oropharyngeal pain	3 (16.7)
Pain	3 (16.7)
Abdominal pain upper	2 (11.1)
Back pain	2 (11.1)
Pain in extremity	2 (11.1)
Pyrexia	2 (11.1)
Rash	2 (11.1)

 The safety profile was consistent with prior studies in healthy volunteers and patients with PK deficiency

> ^aAs of datacut of 3 March 2020 AEs coded using MedDRA, version 22.0

Conclusions

- This is the first clinical study evaluating PKR activation as a therapeutic option in α and β-thalassemia, and is the first drug trial aimed at treating α -thalassemia
- Proof-of-concept was demonstrated
 - > 90% of patients met the primary endpoint showing a clinically significant Hb increase
 - All four α-thalassemia patients and eight of nine β-thalassemia patients were responders
 - A sustained Hb response was observed over time in patients with longer follow-up
 - Improvements in markers of hemolysis and erythropoiesis were consistent with mitapivat's mechanism of action
- Mitapivat was generally well tolerated; the safety profile was consistent with previous studies

These data indicate that activation of wild-type PKR by the oral agent mitapivat improved Hb and associated markers of hemolysis and erythropoiesis in patients with both α-and β-thalassemia, and that further investigation is warranted. Pivotal trials are in development.