Long-Term Efficacy and Safety of the Oral Pyruvate Kinase Activator Mitapivat in Adults with Non–Transfusion-Dependent Alpha- or Beta-Thalassemia

Kevin H.M. Kuo, MD¹, D. Mark Layton, MB BS², Ashutosh Lal, MD³, Hanny Al-Samkari, MD⁴, Joy Bhatia, MD⁵, Penelope A. Kosinski, MS⁵, Bo Tong, PhD⁵, Megan Lynch, MSN⁵, Katrin Uhlig, MD⁵, Elliott P. Vichinsky, MD³

¹Division of Hematology, University of Toronto, Toronto, ON, Canada; ²Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK; ³Division of Hematology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA; ⁴Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ⁵Agios Pharmaceuticals, Inc., Cambridge, MA, USA

Disclosures

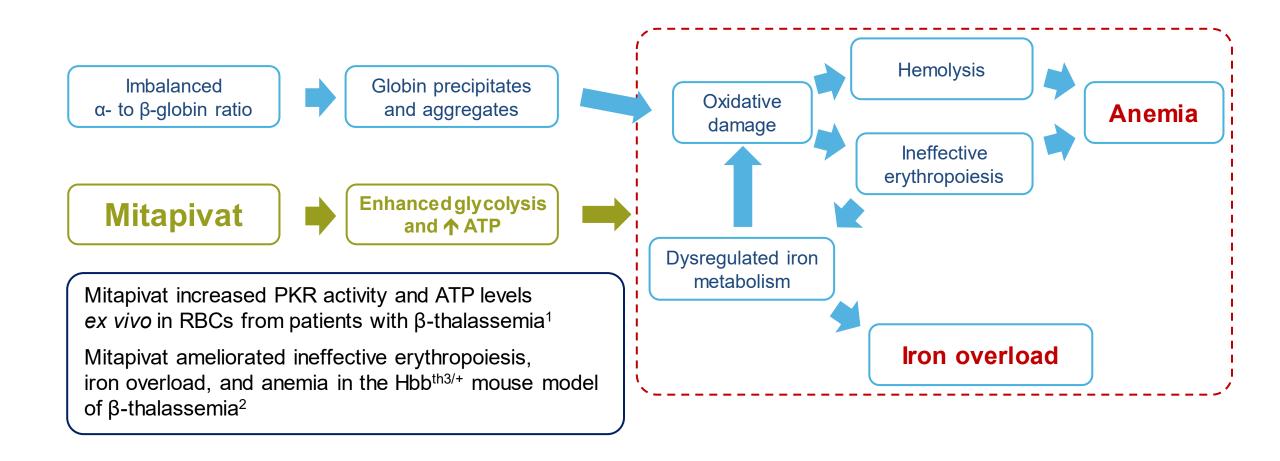
- This study was funded by Agios Pharmaceuticals, Inc.
- Author conflict of interest disclosures as follows:
 - K. H. M. Kuo: Agios, Alexion, Apellis, bluebird bio, Celgene, Pfizer, Novartis consultancy; Alexion, Novartis honoraria; Bioverativ membership on an entity's Board of Directors or advisory committees; Pfizer research funding
 - D. M. Layton: Agios, Novartis consultancy; Agios, Cerus, Novartis membership on an entity's Board
 of Directors or advisory committees
 - A. Lal: bluebird bio, Celgene, Insight Magnetics, La Jolla Pharmaceutical Company, Novartis,
 Protagonist Therapeutics, Terumo Corporations research funding; Agios, Chiesi USA consultancy;
 Celgene, Protagonist Therapeutics membership on an entity's Board of Directors or advisory
 committees
 - H. AI-Samkari: Agios, argenx, Dova/Sobi, Novartis, Rigel, Moderna consultancy; Agios, Amgen, Dova research funding
 - J. Bhatia, P. A. Kosinski, B. Tong, M. Lynch, and K. Uhlig: Agios employees and shareholders
 - E. P. Vichinsky: Agios, bluebird bio, Global Blood Therapeutics, Novartis, Pfizer consultancy and research funding

Acknowledgments

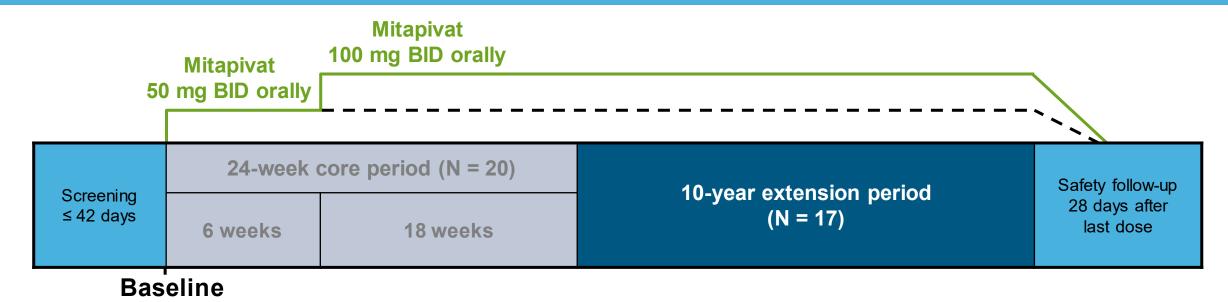
- We would like to thank the patients who took part in this study
- Editorial assistance was provided by Rabiah Bhandari, MSc, Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.

Background – thalassemia

- Thalassemia is a red blood cell (RBC) disorder in which ineffective erythropoiesis and hemolysis
 occur due to imbalanced globin production and precipitation of excess globin chains^{1,2}
- Thalassemic RBCs have insufficient levels of ATP to meet increased energy demands associated with globin chain precipitation, protein degradation, and cellular oxidative stress responses^{3,4}
- Thalassemia can result in complications including^{1,2}
 - Anemia, bone marrow expansion, extramedullary hematopoiesis, osteoporosis and bone deformities, iron overload, gallstones, and splenomegaly
- Treatment options for non-transfusion-dependent thalassemia (NTDT) are supportive only, highlighting an unmet need for disease-modifying therapies⁵
- Mitapivat is an investigational, first-in-class, oral, small-molecule allosteric activator of RBC pyruvate kinase (PKR), a key glycolytic enzyme that regulates ATP production⁶


^{1.} Taher AT et al. *Lancet* 2018;391:155–67. **2.** Galanello et al. *Ophanet J Rare Dis* 2010;5:11. **3.** Khandros E et al. *Blood* 2012;119:5265–75. **4.** Shaeffer JR. *J Biol Chem* 1988;263:13663–9. **5.** Musallam KM et al. *Haematologica* 2021:106:2489–92. **6.** Kung C et al. *Blood* 2017;130:1347–56.

Background – proposed mitapivat mechanism of action in thalassemia


Mitapivat activates wild-type and mutant PKR¹ and increases RBC ATP levels² Glucose **FBP** 1,3-DPG **2,3-DPG Mitapivat** PEP **Pyruvate**

- Mitapivat activates PKR, which catalyzes the final step of glycolysis in RBCs¹
- ATP generation is essential for RBC function and stability^{2,3}

Background – proposed mitapivat mechanism of action in thalassemia

Design of phase 2 study of mitapivat in adults with α- or β-NTDTa

Core period¹ – key inclusion criteria

- β-thalassemia ± α-globin gene mutations, HbE β-thalassemia, or α-thalassemia (HbH disease)
- Hemoglobin (Hb) ≤ 10.0 g/dL
- Non-transfusion-dependent

Long-term extension – key inclusion criteria

- Completed 24-week core period
- Achieved a primary Hb response (defined on slide 8), or achieved a delayed Hb response (Hb increase of ≥ 1.0 g/dL at ≥ 1 assessment after Week 12)
- No ongoing grade ≥ 3 treatment-emergent adverse events (TEAEs) related to study drug

^aEudraCT 2018-002217-35, ClinicalTrials.gov. NCT03692052.

Phase 2, open-label trial of mitapivat in adults with α - or β -NTDT^a

Results from core period (previously presented)¹

- The primary endpoint of Hb response was met in 80.0% (16/20) of patients
 - Hb response defined as: ≥ 1.0 g/dL increase in Hb concentration from baseline at 1 or more assessments between Weeks 4–12, inclusive
- Improvements in markers of hemolysis and ineffective erythropoiesis were also observed
- Mean ATP percent increase from baseline was similar to that previously observed with mitapivat in healthy volunteers
- Mitapivat was generally well tolerated, and the safety profile was consistent with that of previously published mitapivat studies

Long-term extension period

Here, we report on long-term efficacy and safety of mitapivat in patients who continue treatment in the ongoing extension period (up to Week 72; data cutoff 27Mar2021)

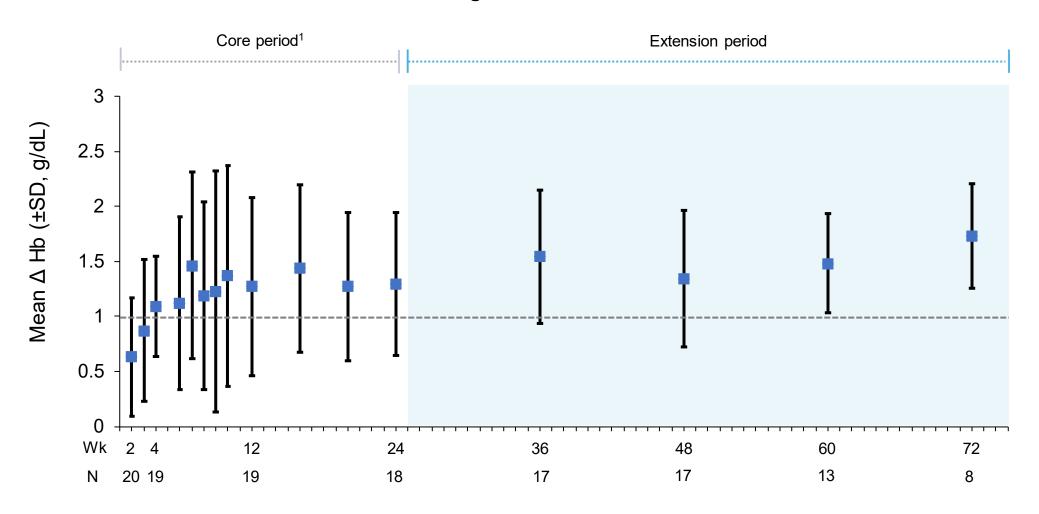
Change in Hb from baseline

Markers of hemolysis

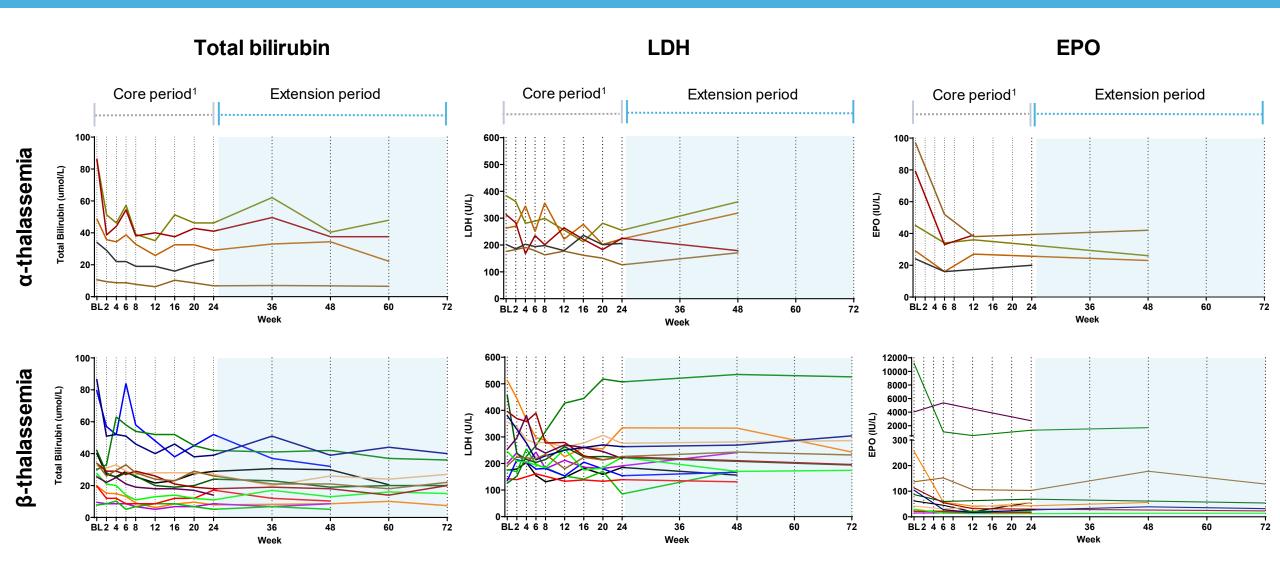
Markers of ineffective erythropoiesis

Safety

Patient demographics and baseline characteristics for patients who entered the long-term extension period


Patient demographics and	All patients	
baseline ^a characteristics	(N = 17)	
Median (range) duration of treatment, weeks	70.9	(54.7, 105.6)
Sex, n (%)		
Male	5	(29.4)
Female	12	(70.6)
Age, median (range), years	44	(29, 67)
Race, n (%) Asian White Native Hawaiian or other Pacific Islander Other Not reported	8 4 1 3 1	(47.1) (23.5) (5.9) (17.6) (5.9)
Thalassemia type, n (%) α-thalassemia	4	(23.5)
β-thalassemia	13	(76.5)
Hb baseline, median (range), g/dL	8.5	(5.6, 9.8)
Total bilirubin, median (range), µmol/L	32.0	(8.6, 90.0)
LDH, median (range), U/L	245.0	(126.0, 513.0)
Erythropoietin, median (range), IU/L	70.5	(15.0, 11191.0)

Genotype		ients : 16) ^b
β-thalassemia , n (%) Intermedia Intermedia + α duplication Heterozygote/phenotypic β-thalassemia intermedia	5 3 2	(26.7) (20.0) (13.3)
HbE/β-thalassemia, n (%) HbE/β ⁰	2	(13.3)
α-thalassemia, n (%) Deletional Non-deletional	1 3	(6.7) (20.0)


^aBaseline is defined as the last assessment on or before the start of study treatment in core period; ^b17 patients entered the extension, genotype data are unknown for 1 patient. BID = twice daily; Hb = hemoglobin; HbE = hemoglobin E; IU = international units; LDH = lactate dehydrogenase; SD = standard deviation; U = units.

Durable improvements in Hb concentration were observed in the extension period

Mean Hb change from baseline over time

Improvements in markers of hemolysis and ineffective erythropoiesis observed in the core period were maintained in the extension period up to Week 72

EPO = erythropoietin; IU = international units; LDH = lactate dehydrogenase; SD = standard deviation; U = units. **1.** Kuo KHM et al. *EHA Annual Congress 2021*; Oral presentation S267.

Safety summary for the core and extension periods

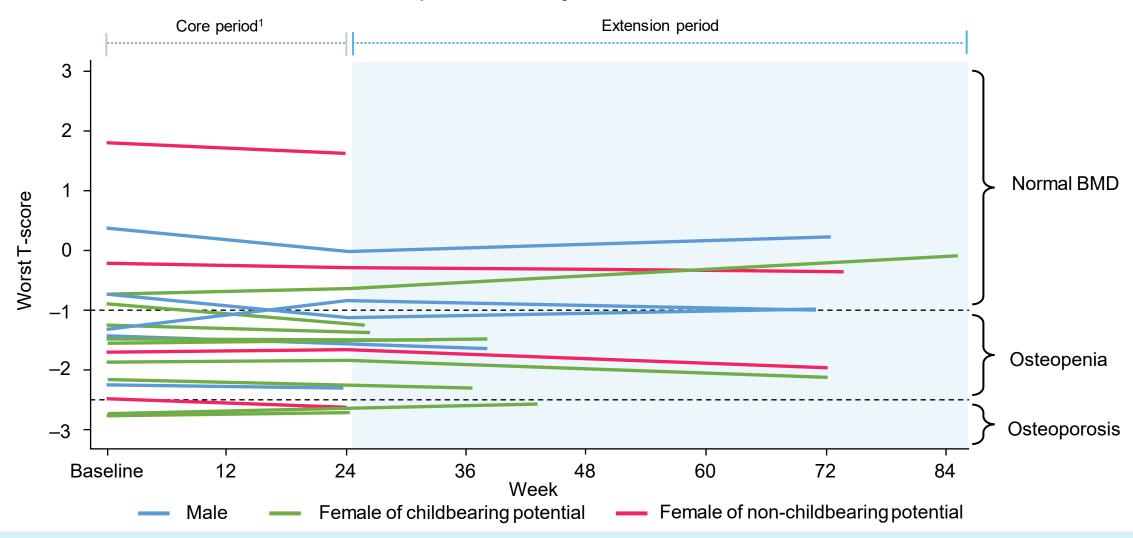
Category	Core period, n (%) ¹ (N = 20) Weeks 0–24	Extension period, n (%) ^a (N = 17) ^b Weeks 25–72
Treatment-related TEAEs	13 (65.0)	2 (11.8)
Grade ≥ 3 TEAEs	5 (25.0)	2 (11.8)
Grade ≥ 3 treatment-related TEAEs	1 (5.0)	0
Serious TEAEs	1 (5.0)	2 (11.8)
TEAEs leading to study drug:		
Dose reduction	3 (15.0)	1 (5.9)
Interruption	1 (5.0)	0
Discontinuation	1 (5.0) ^c	1 (5.9) ^c

- The majority of events occurred earlier in the study and were transient in nature
- There were no treatment-related serious AEs during the extension period

The safety profile was consistent with that observed during the core period

Most common TEAEs (any grade in ≥ 15% of patients)	Core period (N = 20)¹ Weeks 0–24	Extension period (N = 17) ^a Weeks 25–72
(any grade in 2 13 % or patients)	Any grade, n (%)	Any grade, n (%)
Patients with events	17 (85.0)	13 (76.5)
Initial insomnia	10 (50.0)	0
Dizziness	6 (30.0)	1 (5.9)
Headache	5 (25.0)	5 (29.4)
Cough	4 (20.0)	0
Dyspepsia	4 (20.0)	1 (5.9)
Fatigue	4 (20.0)	0
Nasal congestion	4 (20.0)	0
Upper respiratory tract infection	4 (20.0)	0
Abdominal pain	3 (15.0)	1 (5.9)
Diarrhea	3 (15.0)	2 (11.8)
Ocularicterus	3 (15.0)	0
Pain	3 (15.0)	0
Pain in extremity	3 (15.0)	2 (11.8)
Abdominal distension	3 (15.0)	0
Nausea	3 (15.0)	1 (5.9)
Oropharyngeal pain	3 (15.0)	0
Back pain	2 (10.0)	3 (17.6)

- AEs occurring in ≥ 15% of patients during the extension period were headache (5/17) and back pain (3/17), none of which were grade ≥ 3
- No new safety findings were reported in the extension period


^aTEAEs listed in the extension period are new AEs that occurred after entering the extension period.

AE = adverse event; TEAE = treatment-emergent adverse event.

^{1.} Kuo KHM et al. EHA Annual Congress 2021; Oral presentation S267.

No trends for decreases in bone mineral density (BMD) were observed

Plot of individual patient BMD by worst DXA T-scores^a over time

Conclusion

- A favorable efficacy-safety profile was observed with long-term treatment with mitapivat in patients with either α- or β-thalassemia
- Consistent and durable improvements in Hb concentration, and markers of hemolysis and ineffective erythropoiesis, were observed with up to 72 weeks of treatment in a cohort with heterogeneity of globin genotypes
- There were no new safety findings
 - BMD remained stable over time
- Mitapivat, through its unique mechanism of action, may represent a novel therapeutic approach for this condition
- Two phase 3 trials of mitapivat in α- and β-thalassemia, one in patients who are non-transfusion-dependent (ENERGIZE; NCT04770753) and one in patients who are transfusion-dependent (ENERGIZE-T; NCT04770779), are enrolling