A phase 1, open-label, perioperative study of ivosidenib (AG-120) and vorasidenib (AG-881) in recurrent, IDH1-mutant, low-grade glioma: Updated results

Ingo K Mellinghoff¹, Timothy F Cloughesy², Patrick Y Wen³, Jennie W Taylor⁴, Elizabeth A Maher⁵, Isabel Arrillaga-Romany⁶, Katherine B Peters⁷, Changho Choi⁵, Benjamin M Ellingson², Alexander P Lin³, Sunitha B Thakur¹, Brandon Nicolay⁹, Min Lu⁹, Kha Le⁹, Feng Yin⁹, Feng Tai⁹, Steven Schoenfeld⁹, Shuchi S Pandya⁹, Islam Hassan⁹, Lori Steelman⁹, Jennifer Clarke⁴

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²University of California Los Angeles, Los Angeles, CA, USA;
³Dana-Farber Cancer Institute, Boston, MA, USA; ⁴University of California San Francisco, San Francisco, CA, USA;
⁵The University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁶Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA;
⁷Duke University Medical Center, Durham, NC, USA; ⁸Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA;
⁹Agios Pharmaceuticals, Inc., Cambridge, MA, USA

Presented at the 24th Annual Scientific Meeting and Education Day of the Society for Neuro-Oncology (SNO), Nov 22-24, 2019, Phoenix, Arizona, USA

- Honoraria (Compensated Participation in Educational Activity): Roche
- Consulting or Advisory Role: Agios, Debiopharm Group
- Research Funding (including Principal Investigator, Site Principal Investigators, Member of Steering Committee Member): Agios, Amgen, BMS, General Electric, Lilly, PUMA Biotechnology

Ivosidenib and Vorasidenib

- Ivosidenib (IVO, AG-120, TIBSOVO[®]): first-in-class, oral, small-molecule inhibitor of mIDH1
 - Approved by the US FDA in July 2018 for mIDH1 R/R AML and in May 2019 for newly diagnosed AML
 - Solid tumor proof of concept achieved in an ongoing phase 3 study in mIDH1 cholangiocarcinoma¹
 - IVO had a brain:plasma ratio of <0.04² in preclinical models, as well as preliminary clinical activity in patients with nonenhancing glioma (n=35), with a median PFS of 13 months³
- Vorasidenib (VOR, AG-881): oral, potent, reversible, brain-penetrant inhibitor of mIDH1 & mIDH2
 - In an orthotopic glioma model, VOR had an IC₅₀ of 0.1 ng/ml,⁴ inhibited tumor growth, and showed 98% suppression of tumor 2-HG with a brain:plasma ratio of 1.33⁵
 - In an ongoing phase 1 study (n=52 gliomas), as of 26 July 2019, VOR was associated with a favorable safety profile at doses <100 mg once daily (QD)⁶; and resulted in an ORR of 13.6%, including 1 PR, 2 MR, and 77% stable disease, and a median treatment duration of 22 months in nonenhancing glioma (n=22)

^{1.} ClinicalTrials.gov NCT02989857. Abou-Alfa GK et al. *J Clin Oncol* 2018;36(suppl 4S):TPS545. **2.** Nicolay B et al. 2017 SNO Annual Meeting: Poster EXTH-59. **3.** ClinicalTrials.gov NCT02073994. Mellinghoff I et al. 2017 SNO Annual Meeting: Poster EXTH-59. **3.** ClinicalTrials.gov NCT02073994. Mellinghoff I et al. 2017 SNO Annual Meeting: Presentation ACTR-46. **4.** Yen K et al. 2017 AACR-NCI-EORTC Annual Meeting: Poster B126. **5.** Nicolay B et al. 2017 SNO Annual Meeting: Poster EXTH-34. **6.** ClinicalTrials.gov NCT02481154. Mellinghoff I et al. 2019 EANO 14th Meeting: Presentation PL3.1. 2-HG = D-2-hydroxyglutarate; AML = acute myeloid leukemia; IC⁵⁰ = 50% inhibitory concentration; mIDH = mutant isocitrate dehydrogenase; MR = minor response; ORR = overall response rate; PFS = progression-free survival; PR = partial response; R/R = relapsed/refractory

Study Objectives

Primary

 2-HG concentration in tumors resected following presurgical treatment with IVO or VOR, compared with untreated control tumors

Secondary

- Safety of IVO and VOR
- Pharmacodynamics of 2-HG in plasma
- Pharmacokinetics (PK) in plasma and tumor
- Preliminary clinical activity by RANO-LGG

Exploratory

- 2-HG in tumor pre- and posttreatment
- PK/PD relationship of IVO and VOR in tumor, plasma, and CSF

Study Schema

^aAll patients can opt to receive study drug postoperatively. Patients in the control group will be randomized 1:1 to either IVO or VOR. ^bSecond doses of IVO and/or VOR will be tested in Cohort 2. Patients will be randomized 1:1 to either IVO or VOR. BID = twice daily; MRI-MRS = magnetic resonance imaging magnetic resonance spectroscopy; WHO = World Health Organization; WT = wild type

Study Status

- Study was initiated March 2018; enrollment completed April 2019
- 49 patients randomized before surgery
- All patients proceeded to surgery without unplanned delays
- 10 patients discontinued treatment as of 26 July 2019 data cutoff:
 - Disease progression (2 VOR, 3 IVO)
 - Investigator decision (1 VOR, 1 IVO)^b
 - Did not continue postoperatively (3 IVO)^b

	Patients who received at least 1 dose pre- and/or postsurgery (N=49) ^a					
	Voras (n:	sidenib =24)	lvosidenib (n=25)			
Disposition, n (%)	50 mg QD (n=14)	10 mg QD (n=10)	500 mg QD (n=15)	250 mg BID (n=10)		
On treatment	11 (78.6)	10 (100)	12 (80)	6 (60)		
Discontinued	3 (21.4)	0	3 (20)	4 (40)		

As of the data cutoff, the median (range) postoperative treatment duration (all doses) was 5.42 (0.9–13.5) months for VOR and 6.93 (1.0–13.2) months for IVO; these data continue to mature

Baseline Characteristics

	Vorasidenib (N=24)	lvosidenib (N=25)
Median (range) age, years	49 (31–75)	37.0 (19–66)
Male/female, n	16/8	17/8
KPS score at baseline, n (%) 100% 90% 80%	8 (33.3) 13 (54.2) 3 (12.5)	12 (48.0) 12 (48.0) 1 (4.0)
WHO tumor grade, n (%) Grade 2 Grade 3	22 (91.7) 2 (8.3)	21 (84.0) 4 (16.0)
Histological subtype, n (%) Oligodendroglioma Astrocytoma Anaplastic oligodendroglioma Anaplastic oligoastrocytoma	13 (54.2) 11 (45.8) 0 0	12 (48.0) 11 (44.0) 1 (4.0) 1 (4.0)
1p19q status (if known), n (%) Intact Co-deleted	11 (45.8) 11 (45.8)	9 (36.0) 13 (52.0)
Prior surgery, n (%)	24 (100)	25 (100)
Prior radiation therapy, n (%)	7 (29.2)	7 (28.0)
Prior systemic therapy, n (%)	10 (41.7)	14 (56.0)

AEs in ≥10% of Patients Treated (All Causalities)

Ivosidenib					
All patients, n (%) ^a	All grades (N=25)	All			
Patients with at least 1 TEAE	25 (100)	Pati			
Headache	8 (32.0)	1 T I			
Diarrhea	7 (28.0)	Dia			
Anemia	7 (28.0)	Fati			
Hypocalcemia	6 (24.0)	Nau			
Cough	6 (24.0)	Hea			
Seizure	6 (24.0)	Cor			
Hypokalemia	5 (20.0)	Insc			
Nausea	5 (20.0)	Ane			
Nasal congestion	5 (20.0)	Abd			
Constipation	4 (16.0)				
Hyperglycemia	4 (16.0)				
Pruritis	4 (16.0)				
Hyponatremia	3 (12.0)				
Insomnia	3 (12.0)				
Paresthesia	3 (12.0)				
Upper respiratory tract infection	3 (12.0)				

Vorasidenib						
All patients, n (%) ^a	All grades (N=24)					
Patients with at least 1 TEAE	23 (95.8)					
Diarrhea	7 (29.2)					
Fatigue	7 (29.2)					
Nausea	7 (29.2)					
Headache	6 (25.0)					
Constipation	5 (20.8)					
Insomnia	4 (16.7)					
Anemia	3 (12.5)					
Abdominal pain	3 (12.5)					

- 8.3% TEAEs of transaminase elevations in VOR group
 - 1 TEAE of grade 3 transaminase elevation at 50 mg QD that resolved with dose interruption
- Grade 3 or higher events occurred in 6 (25.0%) VOR- and 4 (16.0%) IVO-treated patients, with the majority related to postoperative complications
- No patient discontinued treatment owing to an AE

alncludes all patients who received at least 1 dose of IVO or VOR in the pre- or postsurgery treatment period, untreated control patients are categorized according to postoperative treatment. Only AEs occurring on or after the first dose of study drug are included. AE = adverse event; TEAE = treatment-emergent adverse event

Tumor and Plasma PK

	Tumor, ng/g			Plasma C _{avg} , ng/mL				
Time of surgery sample	VOR 50 mg QD N=9	VOR 10 mg QD N=8	IVO 500 mg QD N=11	IVO 250 mg BID N=9	VOR 50 mg QD N=10	VOR 10 mg QD N=9	IVO 500 mg BID N=11	IVO 250 mg BID N=9
Geometric mean (range) drug concentration	110 (59.8– 190)	66.0 (33.2–113)	233 (105– 604)	278 (109–594)	67.7 (30.5– 139)	20.9 (10.8–33.8)	2618 (1762– 3369)	2430 (1597–3829)

- Tumors obtained from 47 out of 49 randomized patients, with 37 treated and 5 untreated evaluable
- VOR and IVO demonstrated brain penetrance, with mean brain:plasma ratios of 3.16 (VOR 10 mg), 1.74 (VOR 50 mg), 0.13 (IVO 250 mg), and 0.10 (IVO 500 mg)

2-HG Concentrations in Tumors

- Mean percentage reduction in 2-HG (95% CI) of 92.6% (76.1, 97.6) and 91.1% (72.0, 97.0) for VOR 50 mg QD and IVO 500 mg QD, respectively, relative to untreated samples
- Data corrected for VAF and cellularity in IVO-treated samples difficult to interpret owing to limited evaluable samples

	Vorasi	idenib	lvosidenib		
RANO response, n (%)ª	50 mg QD (n=13)	10 mg QD (n=8)	500 mg QD (n=13)	250 mg BID (n=8)	
Partial response (PR)	2 (15.4)	0	2 (15.4)	0	
Minor response (MR)	2 (15.4)	0	2 (15.4)	0	
Stable disease (SD)	7 (53.8)	8 (100)	9 (69.2)	7 (87.5)	
Progressive disease (PD)	2 (15.4)	0	0	1 (12.5)	
Objective response rate (ORR)	4 (30.8)	0	4 (30.8)	0	
Disease Control Rate (PR+MR+SD)	11 (84.6)	8 (100)	13 (100)	7 (87.5)	

^aPatients categorized by postsurgery treatment assignment. Patients who were randomized and received at least 1 dose of study treatment are available for efficacy analysis if there was a baseline scan and at least 1 postbaseline scan available at the time of the data cutoff. Evaluable patients without measurable disease following surgery (n=10) are captured as best response of SD. 4 patients had incorrect response recorded, based on measurements entered at time of data cut; response corrected after data cut and is reflected in the table.

Patient With Partial Response on Vorasidenib 50 mg QD

- 31-year-old male
- Diagnosed with grade 2 oligodendroglioma,1p19q co-deleted, in 2016
- Biopsy 2016
- Everolimus 2017–2018
- On-study subtotal resection:
 - Surgery: 59×52 mm
 - Postsurgery baseline: 34×31 mm
- 96.5% 2-HG reduction relative to untreated controls
- Started VOR postoperatively on 14 Jan 2019
- Achieved MR at C7, PR at C11 (56.4% reduction)
- Remains on therapy at C12

Summary and Conclusions

- Vorasidenib and ivosidenib demonstrate brain penetrance and suppression of 2-HG in resected mIDH1 gliomas at all doses tested
- Ivosidenib 500 mg QD shows a range of 2-HG suppression with a mean reduction of >90% compared with untreated controls; BID dosing of 250 mg produced similar results
- Vorasidenib resulted in consistent and dose-dependent 2-HG suppression with >90% reduction at 50 mg QD compared with untreated controls
- Preliminary efficacy data show objective tumor responses (~30%) and durable disease control with postoperative treatment
- Ivosidenib and vorasidenib continue to have favorable safety profiles at all doses tested
- These data support the selection of vorasidenib 50 mg QD for a global phase 3 study in residual or recurrent mIDH grade 2 glioma

INDIGO Global Phase 3 Study Design

Acknowledgments

 We would like to thank the patients and their families who took part in this study, and the Investigators and their study teams

Scan code to receive a PDF file of the presentation or visit http://bit.ly/34SUDZ8

