ACTIVATE:

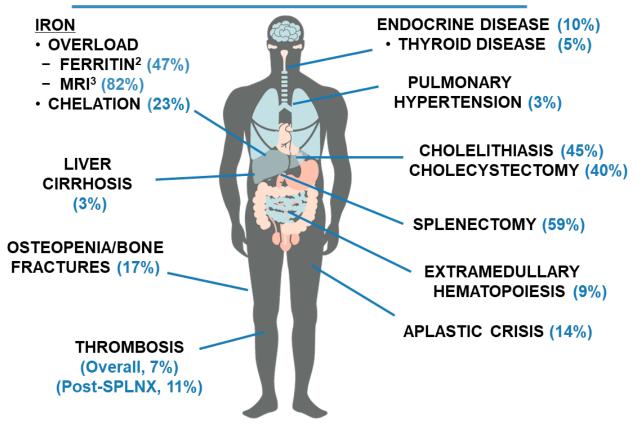
A Phase 3, Randomized, Multicenter, Double-blind, Placebo-Controlled Study Of Mitapivat In Adults With Pyruvate Kinase Deficiency Who Are Not Regularly Transfused

Hanny AI-Samkari, MD,¹ Frédéric Galactéros, MD, PhD,² Andreas Glenthøj, MD,³ Jennifer A. Rothman, MD,⁴ Oliver Andres, MD,⁵ Rachael F. Grace, MD,⁶ Morado Arias, MD,⁷ D. Mark Layton, MB, BS,⁸ Koichi Onodera, MD,⁹ Madeleine Verhovsek, MD,¹⁰ Wilma Barcellini, MD,¹¹ Malia P. Judge, BS,¹² Vanessa Beynon, MD,¹² Emily Xu, PhD,¹² Peter Hawkins, PhD,¹² Erin Zagadailov, PharmD, MS¹² Sarah Gheuens, MD, PhD,¹² Eduard J. van Beers, MD¹³

 ¹Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; ²Unité des Maladies Génétiques du Globule Rouge, CHU Henri Mondor, Créteil, France; ³Department of Hematology, Rigshospitalet, Copenhagen, Denmark; ⁴Duke University Medical Center, Durham, NC, United States;
⁵Department of Paediatrics, University of Würzburg, Würzburg, Germany; ⁶Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, United States;
⁷Hematology Department, Hospital Universitario La Paz, Madrid, Spain; ⁸Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom;
⁹Tohoku University Hospital, Sendai, Japan; ¹⁰McMaster University, Hamilton, Canada; ¹¹Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy;
¹²Agios Pharmaceuticals, Inc., Cambridge, MA, United States; ¹³Van Creveldkliniek, Department of Internal Medicine, University Medical Center Utrecht, Utrecht, Netherlands

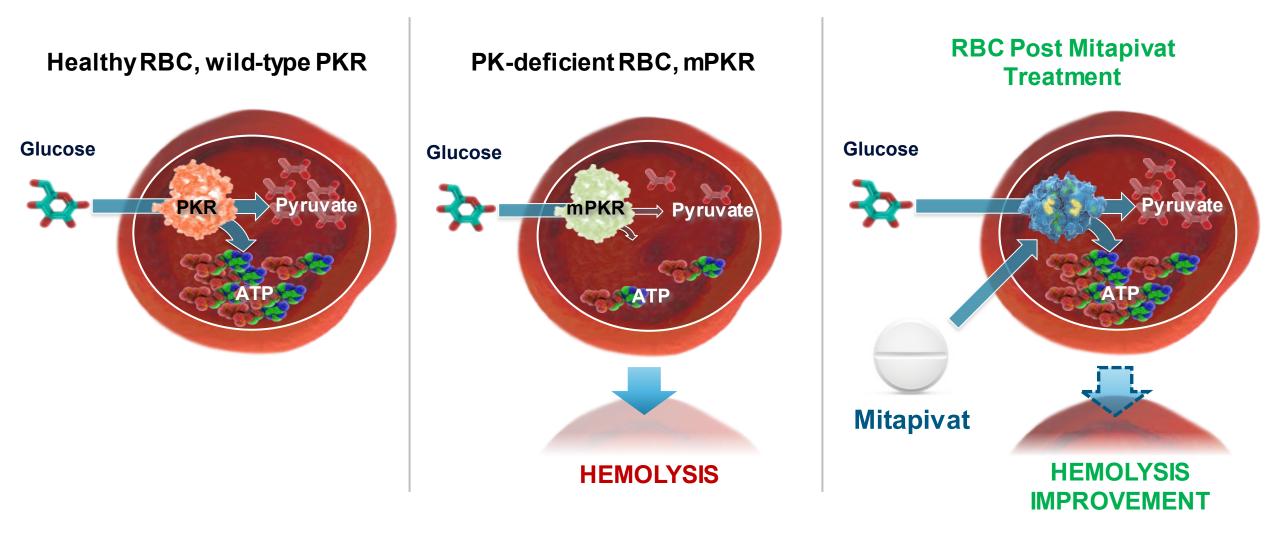
This study was funded by Agios Pharmaceuticals, Inc.

Presented at European Haematology Association (EHA) Virtual Congress; 9 - 17 June 2021


Disclosures

- This study was funded by Agios Pharmaceuticals, Inc.
- Author conflict of interest disclosures as follows:
 - Hanny Al-Samkari: Agios, argenx, Dova, Novartis, Rigel, Sobi consultancy; Agios, Dova, Amgen research funding
 - Frédéric Galactéros: Addmedica board membership or advisory committee
 - Andreas Glenthøj: Agios, bluebird bio, Celgene, Novartis consultancy and advisory board member; Alexion research grant; Novo Nordisk honoraria
 - Jennifer A. Rothman: Pfizer consultancy; Agios, Novartis, Pfizer honoraria; Agios, bluebird bio, Novartis, Pfizer research funding
 - Oliver Andres: Agios Advisory board member
 - Rachael F. Grace: Agios, Novartis, Pfizer research funding; Dova membership of an entity's Board of Directors or advisory committees
 - Marta Morado Arias: Sanofi Genzyme honoraria and other grants
 - D. Mark Layton: Agios, Novartis consultancy; Agios, Cerus, Novartis membership of an entity's Board of Directors or advisory committees
 - Koichi Onodera: No affiliations
 - Madeleine Verhovsek: Vertex consultancy
 - Wilma Barcellini: Agios, Alexion, Novartis honoraria; Agios research funding; Bioverativ, Incyte board membership or advisory committee
 - Malia P. Judge, Vanessa Beynon, Emily Xu, Peter Hawkins, Erin Zagadailov, Sarah Gheuens: Agios employees and shareholders
 - Eduard J. van Beers: Agios advisory board member; Agios, Novartis, Pfizer, RR Mechatronics research funding

Pyruvate kinase deficiency - disease overview

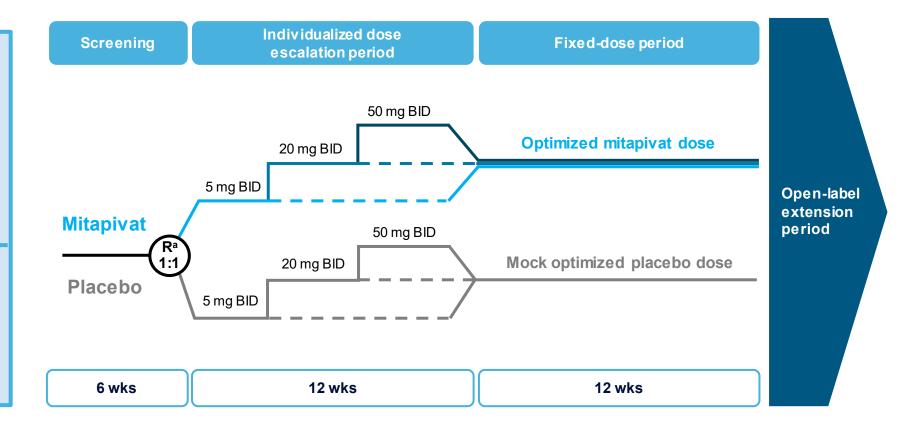

- Underrecognized, rare, hereditary chronic hemolytic anemia^{1,2}
- Due to mutations in *PKLR*, resulting in chronic hemolysis^{1–4}
- Numerous comorbidities and complications^{3–6}
- Current management limited to supportive care and splenectomy^{3,7}
- No approved disease-modifying agents

Comorbidities and long-term complications are common and affect multiple organ systems⁶

MRI = magnetic resonance imaging; PK = pyruvate kinase; PKR = red blood cell-specific form of pyruvate kinase; *PKLR* = gene encoding the pyruvate kinase liver and red blood cell isozymes. 1. Grace RF, et al. *Am J Hematol*. 2015;90:825–30; 2. Zanella A, et al. *Br J Haematol*. 2005;130:11–25; 3. Grace RF, et al. *Blood*. 2018;131:2183–92; 4. van Beers EJ, et al. *Haematologica*. 2019;104:e51–e3; 5. Boscoe AN, et al. *EJH*. 2020;106:484–92; 6. Grace RF, et al. *Eur J Haematol*. 2018;101:758–765; 7. Grace RF, et al. *Br J Haematol*. 2019;184:721–34.

Mitapivat, an oral pyruvate kinase activator

ACTIVATE was a Phase 3, randomized, double-blind, placebo-controlled study that evaluated the efficacy and safety of mitapivat in adult patients with PK deficiency who were not regularly transfused

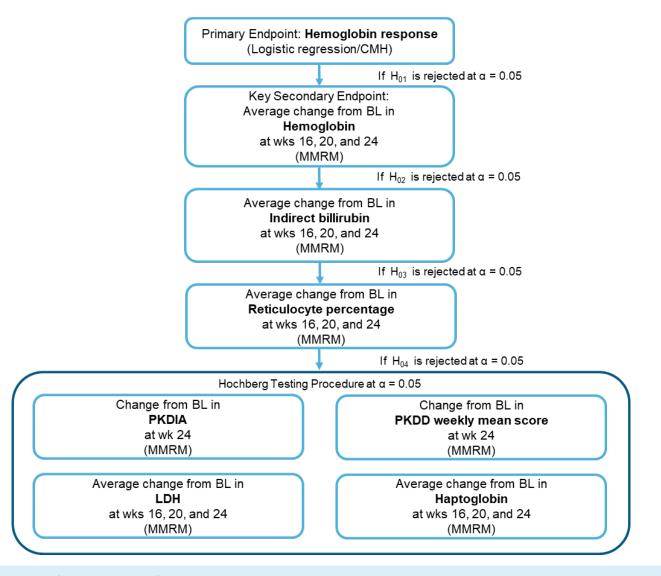

CACTIVATE

Key eligibility criteria:

- ≥ 18 yrs of age
- Documented ≥ 2 mutant alleles in *PKLR* (≥ 1 missense mutation)
- Not regularly transfused (≤ 4 transfusion episodes in previous year)
- Baseline Hb ≤ 10 g/dL
- Adequate organ function

Key exclusion criteria:

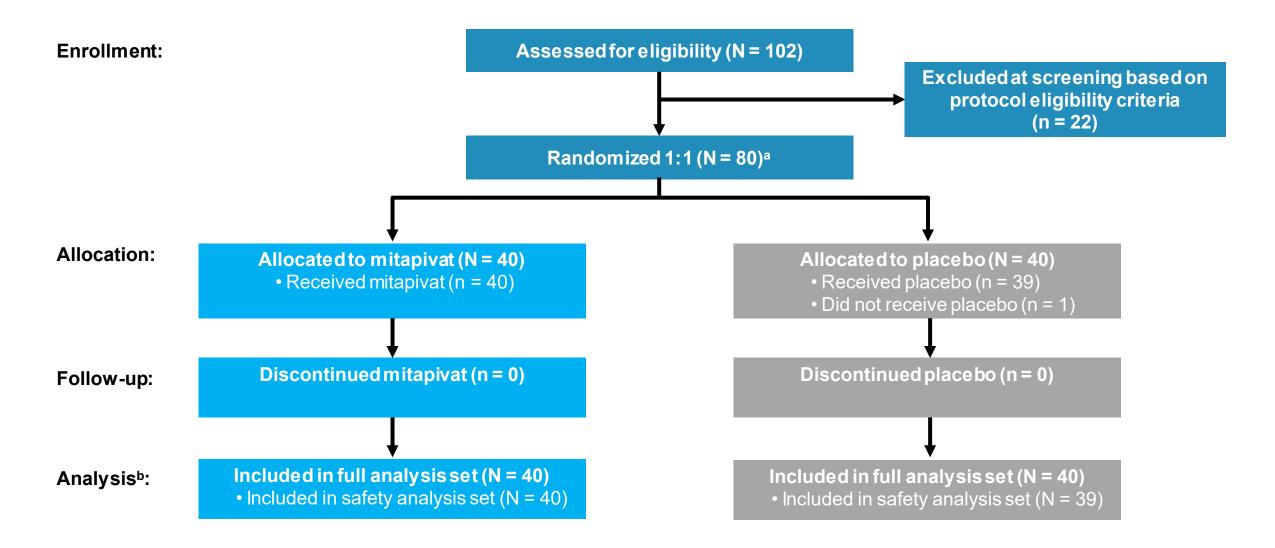
- Homozygous for R479H mutation or have 2 non-missense mutations, without another missense mutation, in *PKLR*
- Splenectomy during study, or within 12 months of enrollment
- Prior bone marrow or stem cell transplant


NB: ACTIVATE, ClinicalTrials.gov NCT03548220; aStratified by average of screening Hb values (< 8.5 g/dL vs ≥ 8.5 g/dL) and *PKLR* gene mutation category (missense/missense vs missense/non-missense). BID = tw ice daily; Hb = hemoglobin; PK = pyruvate kinase; *PKLR* = gene encoding the pyruvate kinase liver and red blood cell isozymes; R = randomized; w ks = w eeks; yrs = years. **Primary endpoint:** Hb response, defined as \geq 1.5 g/dL increase in Hb concentration from BL sustained at \geq 2 scheduled assessments at wks 16, 20, or 24 during fixed-dose period

Key secondary endpoint: Average change from BL in Hb concentration at wks 16, 20, and 24

Other secondary endpoints:

- Average change from BL at wks 16, 20, and 24 in markers of hemolysis: bilirubin, LDH, and haptoglobin levels
- Average change from BL at wks 16, 20, and 24 in markers of hematopoietic activity: reticulocyte percentages (fraction of 1)
- Change from BL at wk 24 in HRQoL PRO scores: PKDIA and PKDD


Statistical testing strategy

H01: Hb Odds Ratio = 1; H0j: Difference in average of mean change from baseline = 0, for j≥ 2.

BL = baseline; CMH = Cochran-Mantel-Haenszel test; Hb = hemoglobin; HRQoL = health-related quality of life; LDH = lactate dehydrogenase; MMRM = Mixed-Effect Model Repeated Measure; PRO = patient-reported outcomes; PKDD = Pyruvate Kinase Deficiency Diary; PKDIA = Pyruvate Kinase Deficiency Impact Assessment; w ks = w eeks.

Patient disposition

^aDisposition for end of randomization reflects the disposition after randomization, but before start of study treatment; ^bAnalysis set definitions: full analysis set included all patients who were randomized to treatment; safety analysis set included all patients who received at least 1 dose of study treatment.

Demographics

Patient demographics	Mitapivat N = 40	Placebo N = 40
Age (years)		
Mean (SD)	36.0 (15.2)	37.2 (15.9)
Range	18–70	19–78
Sex, n (%)		
Male	16 (40.0)	16 (40.0)
Female	24 (60.0)	24 (60.0)
Race, n (%)		
White	28 (70.0)	32 (80.0)
Asian	5 (12.5)	3 (7.5)
Native Hawaiian or Other Pacific Islander	1 (2.5)	0
American Indian or Alaska Native	0	0
Black or African American	0	0
Other	0	1 (2.5)
Not reported	6 (15.0)	4 (10.0)
Geographic Region, n (%)		
Western Europe	19 (47.5)	20 (50.0)
North America	15 (37.5)	16 (40.0)
Asia	5 (12.5)	3 (7.5)
Middle East	0	1 (2.5)
Latin America	1 (2.5)	0

Baseline characteristics

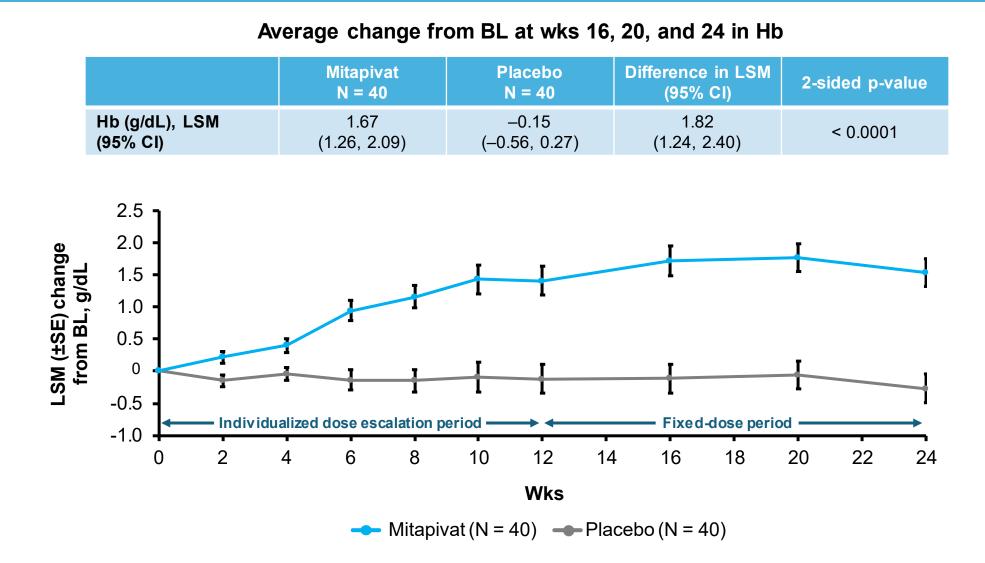
Baseline characteristics	Mitapivat N = 40	Placebo N = 40
Hb (g/dL), mean (SD)	8.6 (0.99)	8.5 (0.85)
Ferritin (μg/L), mean (SD)	748 (1116.2)	688 (605.2)
Hemolysis markers, mean (SD)		
Indirect bilirubin (µmol/L)	81.8 (61.32)	89.1 (61.79)
LDH (U/L)	348 (276.0)	260 (140.2)
Haptoglobin (g/L)	0.08 (0.107)	0.08 (0.138)
Reticulocyte (fraction of 1)	0.37 (0.241)	0.40 (0.222)
Prior transfusions, n (%)		
0	29 (72.5)	30 (75.0)
1	8 (20.0)	7 (17.5)
2	0	1 (2.5)
3	3 (7.5)	1 (2.5)
≥4	0	1 (2.5)
Prior splenectomy, n (%)	28 (70.0)	30 (75.0)
Prior cholecystectomy, n (%)	28 (70.0)	30 (75.0)
Prior chelation therapy, n (%) ^a	5 (12.5)	10 (25.0)
DXA T-Score, mean (SD)		
Femoral total ^b	-1.12 (1.081)	-0.79 (1.098)
Adjusted spine	-1.78 (1.104)	-1.14 (1.153)
PKLR mutation category		
Missense/Missense	28 (70.0)	27 (67.5)
Missense/Non-missense	12 (30.0)	13 (32.5)

NB: Summarized based on full analysis set (all patients who were randomized to treatment).

^{a"}Yes' if a subject has received chelation therapy within 52 wks (364 days) before first dose of study treatment; ^bfemoral neck and total hip combined.

DXA = dual-energy x-ray absorptiometry; Hb = hemoglobin; LDH = lactate dehydrogenase; PKLR = gene encoding the pyruvate kinase liver and red blood cell isozymes; SD = standard deviation; wks = weeks.

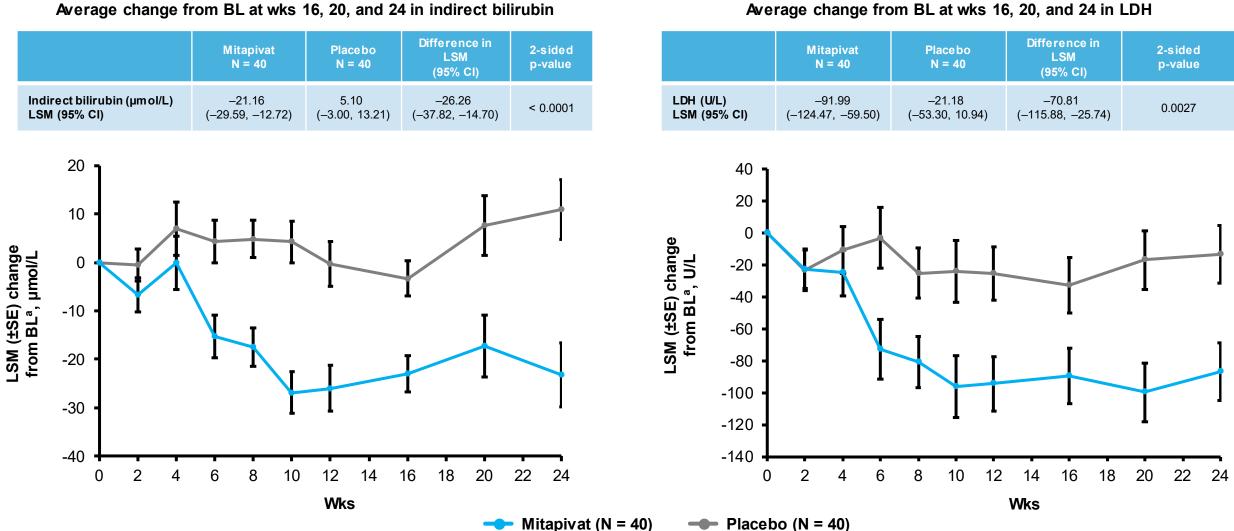
Mitapivat met the primary endpoint, demonstrating a higher hemoglobin response rate as compared with placebo



NB: Each bar represents an individual patient randomized to either mitapivat or placebo; summarized based on full analysis set (all patients who were randomized to treatment).

^aAdjusted difference in response rate for primary endpoint; ^bBL is defined as the average of all screening assessments within 45 (42 + 3) days before randomization for subjects randomized and not dosed or before start of study treatment for subjects randomized and dosed.

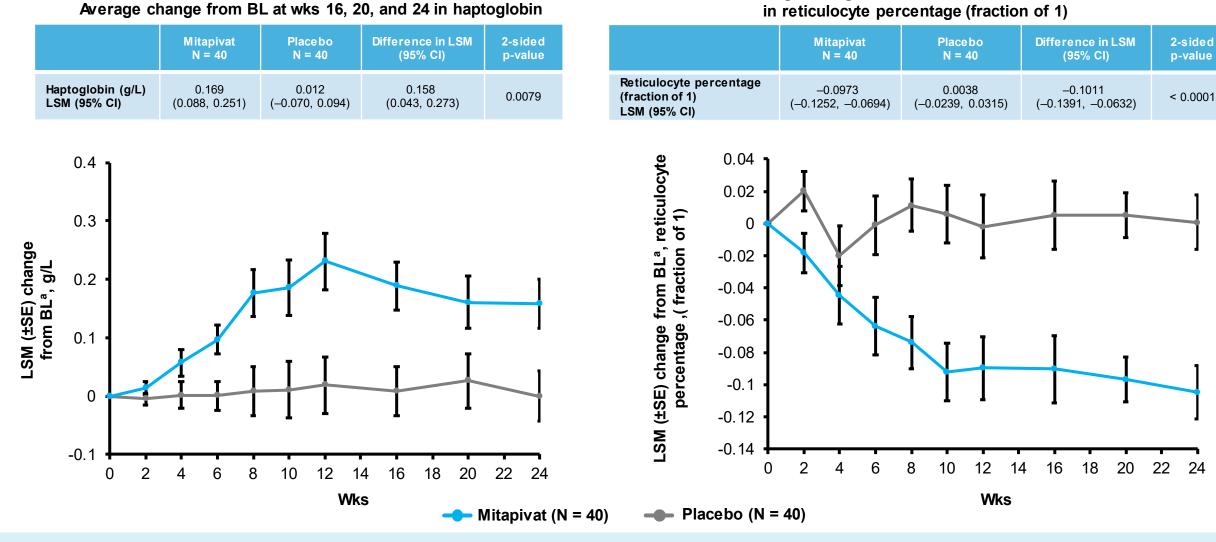
BL = baseline; Cl = confidence intervals; Hb = hemoglobin; w ks = w eeks.


Mitapivat led to early and sustained improvement in Hb

NB: Summarized based on full analysis set (all patients w how ere randomized to treatment); BL is defined as the average of all screening assessments within 45 (42 + 3) days before randomization for subjects randomized and not dosed or before start of study treatment for subjects randomized and dosed.

BL = baseline; Cl= confidence interval; Hb = hemoglobin; LSM = least-squares mean; SE = standard error; w ks = w eeks.

Mitapivat led to improvements in markers of hemolysis


Average change from BL at wks 16, 20, and 24 in indirect bilirubin

NB: Summarized based on full analysis set (all patients who were randomized to treatment). ^aBaseline is defined as the average of all screening assessments within 45 (42 + 3) days before randomization for subjects randomized and not dosed or before start of study treatment for subjects randomized and dosed.

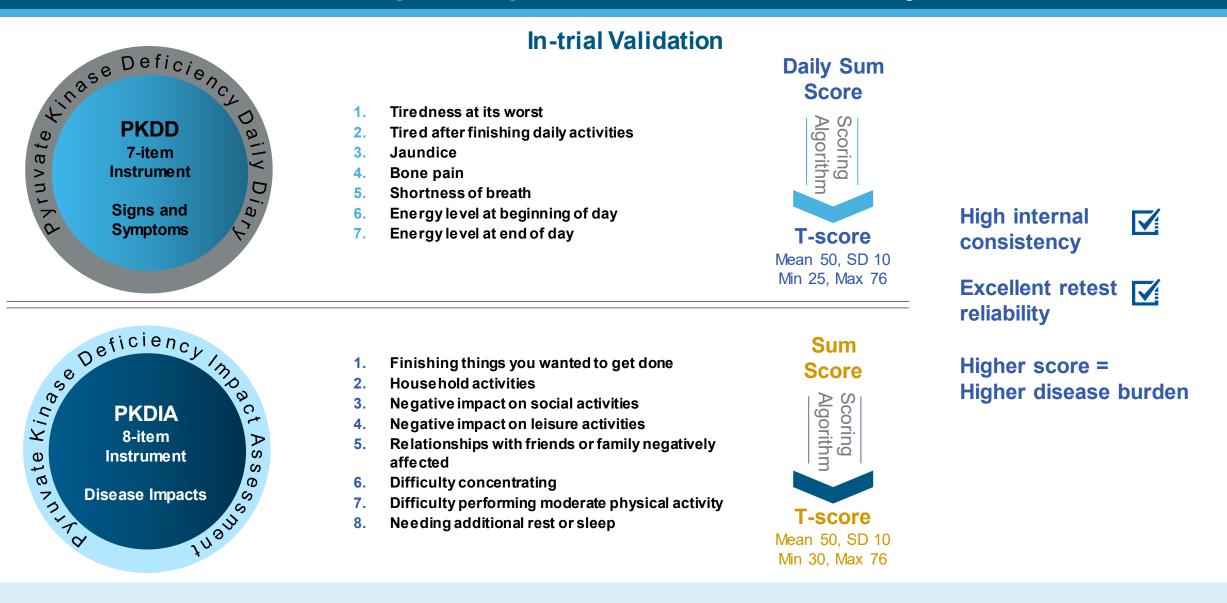
BL = baseline; Cl = confidence interval; LDH = lactate dehydrogenase; LSM = least-squares mean; SE = standard error; Wks = weeks.

Mitapivat led to improvements in markers of hemolysis and hematopoiesis

Average change from BL at wks 16, 20, and 24

NB: Summarized based on full analysis set (all patients who were randomized to treatment). ^aBaseline is defined as the average of all screening assessments within 45 (42 + 3) days before randomization for subjects randomized and not dosed or before start of study treatment for subjects randomized and dosed.

BL = baseline; Cl = confidence interval; LSM = least-squares mean; SE = standard error; Wks = w eeks.


Hemoglobin response was seen across all pre-defined patient subgroups

		Hb response rate, % (n/N)		Difference of H	Hb response rate with 95% CI ^b
Characteristic	Subgroup	Mitapivat	Placebo	Favors placebo 🖛	──→ Favors mitapivat
Overall study population ^a :		40.0 (16/40)	0 (0/40)		
Average of screening Hb:	< 8.5 g/dL ≥ 8.5 g/dL	29.4 (5/17) 47.8 (11/23)	0 (0/18) 0 (0/22)	F	
<i>PKLR</i> mutation category:	Missense/Missense Missense/Non-missense	50.0 (14/28) 16.7 (2/12)	0 (0/27) 0 (0/13)	F	
Baseline Hb:	< 8.5 g/dL ≥ 8.5 g/dL	31.6 (6/19) 47.6 (10/21)	0 (0/21) 0 (0/19)		
Age at screening:	< 35 years ≥ 35 years	40.9 (9/22) 38.9 (7/18)	0 (0/20) 0 (0/20)		¦ , └────
Sex:	Male Female	25.0 (4/16) 50.0 (12/24)	0 (0/16) 0 (0/24)	Г	
Race:	White Other⁰	46.4 (13/28) 25.0 (3/12)	0 (0/32) 0 (0/8)	L	
Geographic region:	North America Western Europe Rest of the World°	33.3 (5/15) 47.4 (9/19) 33.3 (2/6)	0 (0/16) 0 (0/20) 0 (0/4)	F	
Prior splenectomy:	Yes No	21.4 (6/28) 83.3 (10/12)	0 (0/30) 0 (0/10)	F	· · · · · · · · · · · · · · · · · · ·
Prior cholecystectomy:	Yes No	35.7 (10/28) 50.0 (6/12)	0 (0/30) 0 (0/10)		
Prior chelation therapy:	Yes No	20.0 (1/5) 42.9 (15/35)	0 (0/10) 0 (0/30)	 4020 (20 40 60 80

NB: Summarized based on full analysis set (all patients whowere randomized to treatment).

^aStratified by the Average of Screening Hb concentrations and PKLR gene mutation category; ^bFor overall study population difference is based on Mantel-Haenszel stratum weighted method adjusting for randomization stratification factors; for subgroups difference is based on unstratified analyses; ^cPre-specified subgroups with ≤10% of the subjects in the full analysis set were pooled (race, Asian and Other were pooled). Cl = confidence interval; Hb = hemoglobin; N = number of patients randomized; *PKLR* = gene encoding the pyruvate kinase liver and red blood cell isozymes.

PKDD and PKDIA were developed to assess and capture changes in symptom burden and HRQoL impact in patients with PK deficiency

Statistically significant improvement in change from baseline at Week 24 was demonstrated on PKDD and PKDIA mean weekly score

	Mita	pivat	Plac	ebo	LSMª	2-sided p-value
PRO	BL Mean (SD)	LSM Change from BL at W24	BL Mean (SD)	LSM Change from BL at W24	Difference	
PKDD	50.45 (7.315)	-5.16	47.04 (8.103)	-2.05	–3.11 (95% CI:–5.80, –0.41)	0.0247
PKDIA	49.2 (9.00)	-4.65	48.5 (9.15)	-1.39	-3.25 (95% CI: -6.39, -0.12)	0.0421

NB: Summarized based on full analysis set (all patients whowere randomized to treatment). aDifference in least square means (LSM) of change from BL at Week 24.

BL = baseline; Cl = confidence interval; LSM = least square mean; PK = pyruvate kinase; PKDD = PK deficiency diary; PKDIA = PK deficiency impact assessment; PRO = patient-reported outcomes;

SD = standard deviation; W = w eek.

Patients, n (%)	Mitapivat N = 40	Placebo N = 39
Any TEAEs	35 (87.5)	35 (89.7)
Treatment-related TEAEs	23 (57.5)	14 (35.9)
Grade≥3 TEAEs	10 (25.0)	5 (12.8)
Grade \geq 3 treatment-related TEAEs	3 (7.5)	0
Serious TEAEs	4 (10.0)	2 (5.1)
TEAEs leading to dose reduction of study drug	0	0
TEAEs leading to interruption of study drug	0	2 (5.1)
TEAEs leading to discontinuation of study drug	0	0
TEAEs leading to death	0	0

NB: The denominator used to calculate percentages is N, the number of subjects in the Safety Analysis Set within each treatment arm. TEAE = treatment-emergent adverse event.

Most frequently reported (≥ 10%) Adverse Events in ACTIVATE

Preferred Term	Mitapivat N = 40	Placebo N = 39
Patients with events, n (%)	35 (87.5)	35 (89.7)
Nausea	7 (17.5)	9 (23.1)
Headache	6 (15.0)	13 (33.3)
Nasopharyngitis	5 (12.5)	6 (15.4)
Fatigue	5 (12.5)	4 (10.3)
Back pain	5 (12.5)	3 (7.7)
Diarrhea	4 (10.0)	7 (17.9)
Dizziness	4 (10.0)	3 (7.7)
Abdominal pain	4 (10.0)	2 (5.1)
Arthralgia	4 (10.0)	2 (5.1)
Dyspnea	3 (7.5)	4 (10.3)
Alanine aminotransferase increased	1 (2.5)	6 (15.4)
Initial insomnia	1 (2.5)	4 (10.3)
Upper respiratory tract infection	0	4 (10.3)

NB: Summarized in order of decreasing frequency of subjects with events based on the frequencies observed in any grade for the mitapivat arm. The denominator used to calculate percentages is N, the number of subjects in the Safety Analysis Set within each treatment arm. Subjects with multiple adverse events within a PT were counted only once in that PT. For subjects with multiple occurrences of an adverse event, the adverse event with the worst CTCAE grade was included in the summary. MedDRA Version 23.1 and CTCAE Version 4.03 were used. TEAE = treatment-emergent adverse event.

Mitapivat has the potential to be the first disease-modifying drug therapy for patients with pyruvate kinase deficiency

- Mitapivat demonstrated sustained improvement in hemolytic anemia in non-regularly transfused patients with PK deficiency
 - 40% in mitapivat group achieved a Hb response compared to 0% in placebo group (2-sided p < 0.0001)
 - Increase in Hb occurred early and was sustained
 - The effect of mitapivat on Hb response compared to placebo was observed consistently across all predefined subgroups
- Statistically significant improvements were also demonstrated for the secondary endpoints, including:
 - Average change from baseline in Hb concentration
 - Average change from baseline in markers of hemolysis and hematopoietic activity
 - Change from baseline in novel, PK deficiency-specific PROs
- Mitapivat was well-tolerated with safety profile consistent with prior studies; no TEAEs leading to discontinuation

Acknowledgements

- We would like to thank the patients taking part in this study
- This study was funded by Agios Pharmaceuticals, Inc.
- Editorial assistance was provided by Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.