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2-HG, D-2-hydroxyglutarate; AML, acute myeloid leukemia; CR, complete remission; CRh, CR with partial hematologic recovery; IDH, isocitrate dehydrogenase; 
m, mutant; ORR, overall response rate; R/R, relapsed or refractory
1. DiNardo CD et al. N Engl J Med 2018;378:2386-98. 2. Harding JJ et al. Cancer Discov 2018;8:1540-7.

Background

▪ Somatic mutations in IDH1 (IDH2) occur in 6−10% (9–13%) of patients with AML, resulting in 

production of the oncometabolite 2-HG

▪ Ivosidenib, a mutant IDH1 (mIDH1) inhibitor, is approved in the US for m IDH1 R/R AML, and 

newly diagnosed mIDH1 AML in patients ≥75 years old or with comorbidities precluding 

intensive induction chemotherapy

▪ Durable remissions in mIDH1 R/R AML were achieved with ivosidenib in a phase 1 study 

(NCT02074839)1

– ORR 42%, CR 22%, and CR+CRh 30%

– Median duration of CR+CRh: 8.2 months

▪ Initial case report identified two patients with m IDH1 acquiring mIDH2 at relapse following 

ivosidenib monotherapy2
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▪ Resolve clonal architecture

▪ Examine the genetic mechanism by which AML retains dependency on 2-HG

Objectives

Use single-cell mutation profiling to explore the evolution of mIDH2 clones under 

the selective pressure of ivosidenib monotherapy in a subset of patients
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Clinical data cutoff: Nov 2, 2018

DNAseq, DNA sequencing; NGS, next-generation sequencing; PBMC, peripheral blood mononuclear cell; QD, once daily

Analysis dataset and methods

Available single-cell DNAseq data (PBMC) 

(sensitivity 0.1%)

n = 9

ASXL1 JAK2 RUNX1

DNMT3A KIT SF3B1

EZH2 KRAS SRSF2

FLT3 NPM1 TP53

GATA2 NRAS U2AF1

IDH1 PTPN11 WT1

IDH2

Phase 1 study

mIDH1 R/R AML, 500 mg QD ivosidenib

N = 174

Baseline and any on-treatment time point

(targeted NGS profiling, sensitivity 2−5%)

n = 129

mIDH2 detected on treatment

(targeted NGS profiling, sensitivity 2−5%)

n = 15

Tapestri® with a 19-gene AML panel
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Case 1:
62 y, M, de novo AML, prior IC, then R/R to azacitidine and decitabine (HMA)

C, cycle; IC, intensive chemotherapy; HMA, hypomethylating agent; M, male; NA, not available; y, years; LLOQ, lower limit of quantification; RL, relapse; 

SCR, screening; SD, stable disease; TKD, tyrosine kinase domain; VAF, variant allele frequency

Blast %              58                 1                                      8   NA

Plasma 2-HG 

(ng/mL)             911              <LLOQ                                   203
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▪ Both mIDH1/NPM1/NRAS and mIDH1/NPM1/FLT3-

TKD clones are sensitive to ivosidenib

▪ Resistance evolves through acquisition of mIDH2 

within mIDH1 clone (2-HG−dependent mechanism)
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6CRp, CR with incomplete platelet recovery; F, female; sAML, secondary AML; MLFS, morphologic leukemia-free state

Case 2: 
85 y, F, sAML, prior therapy with azacitidine and lenalidomide, del 5q

Kinetics of relapse 

▪ Early: subclonal expansion of PTPN11

(2-HG−independent)

▪ Late: acquisition of mIDH2 within mIDH1 

clone (2-HG−dependent)
Blast %            83                                  8                                 60

Plasma 2-HG 

(ng/mL)          1000 76.8             67.5   NA   84.3                     671
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Case 3: 
67 y, M, de novo AML, prior decitabine and vosaroxin, refractory AML with +8 karyotype

*RL: only 6% blasts

Plasma 2-HG 

(ng/mL)                965 517 1800 3180 1750

IDH2 25.5% (585)
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▪ Polyclonal disease with mIDH1 clone being cleared 

with ivosidenib treatment

▪ Relapse due to:

− Evolution of IDH-wild type clone

− Expansion or evolution of multiple mIDH2 clones 

Clonal structure: 

Single cell
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2-HG restoration via mIDH2 in diverse clonal architecture
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▪ Single-cell mutation profiling reveals multiple evolutionary mechanisms by 

which mIDH2 contributes to relapse

▪ 2-HG restoration via mIDH2 acquisition underscores the key role of 2-HG 

production in mIDH AML

▪ These results inform the design of combination or sequential treatment 

strategies with ivosidenib in mIDH1 AML, for example, enasidenib treatment 

at relapse

▪ Frequency of relapse mechanisms via comprehensive genomic analysis will 

be presented shortly in this session (Presentation 545, 8:00 AM)

Conclusions
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