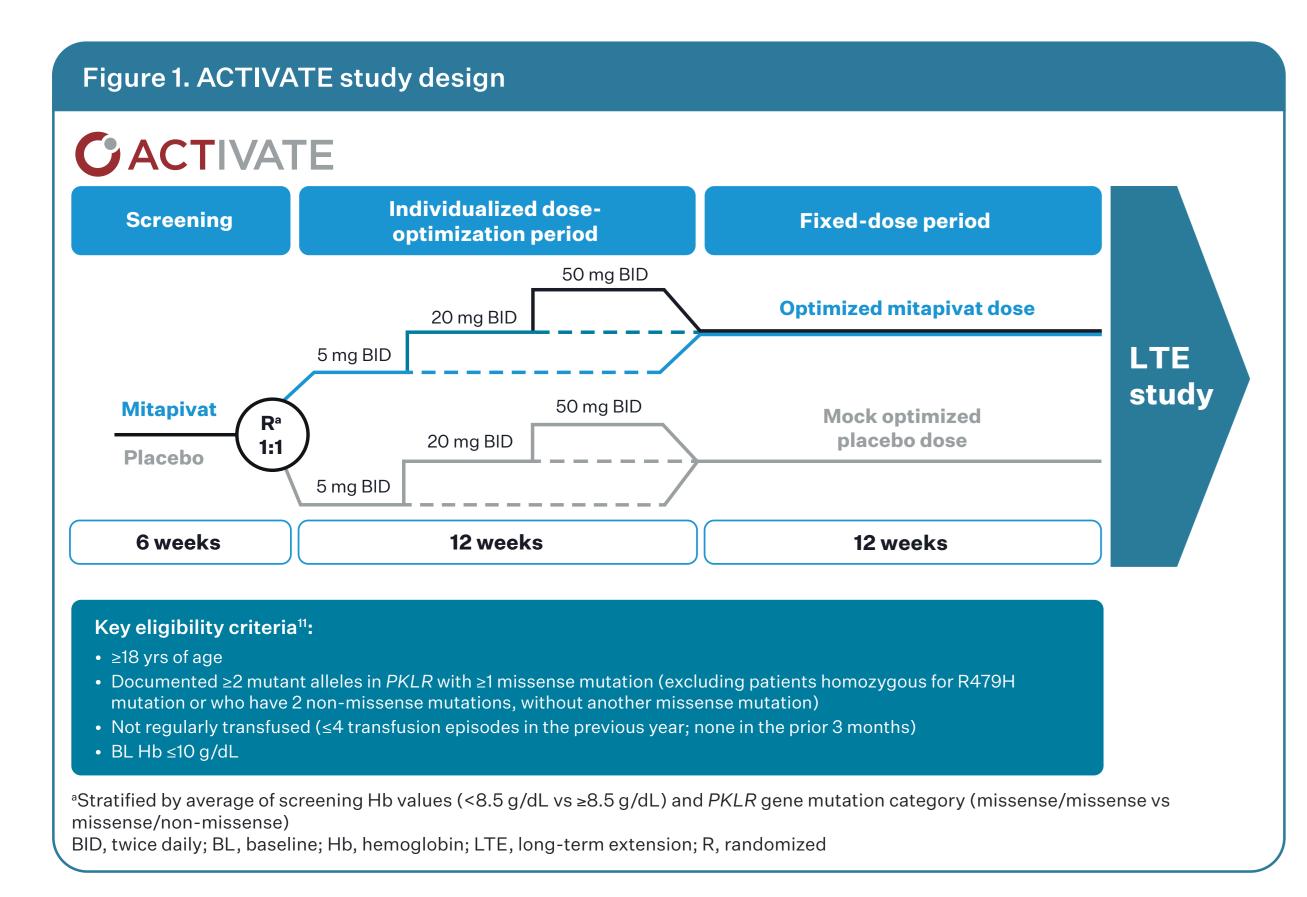
Mitapivat improves markers of hemolysis and erythropoiesis in patients with pyruvate kinase deficiency irrespective of hemoglobin response

Hanny Al-Samkari, MD,¹ Rachael F Grace, MD,² Eduard J van Beers, MD, PhD,³ Feng Tai, PhD,⁴ Jaime Morales-Arias, MD,⁴ Vanessa Beynon, MD,⁴ Andreas Glenthøj, MD⁵

¹Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA, USA; ²Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Van Creveldkliniek, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; ⁴Agios Pharmaceuticals, Inc., Cambridge, MA, USA; ⁵Department of Hematology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark

BACKGROUND

- Pyruvate kinase (PK) deficiency is a rare, hereditary disorder caused by mutations in the *PKLR* gene encoding the red blood cell-specific form of PK (PKR), which leads to chronic hemolytic anemia¹⁻⁴
- PK deficiency is associated with serious acute and long-term complications, most of which occur as a consequence of chronic, ongoing hemolysis and ineffective erythropoiesis³⁻⁶
- Mitapivat (AG-348), a first-in-class, oral, allosteric activator of PKR, is approved by the US FDA for the treatment of hemolytic anemia in adults with PK deficiency^{7–10}
- By activating PKR, mitapivat has been shown in the phase 3 ACTIVATE study (NCT03548220) to significantly improve hemoglobin (Hb) and markers of hemolysis and erythropoiesis in patients with PK deficiency who were not regularly transfused¹¹
- To a lesser degree, induction of *UGT1A1* by mitapivat may also affect the metabolism of indirect bilirubin (one of the hemolysis markers studied), potentially contributing to decreased levels of this marker⁹
- The impact of mitapivat on markers of hemolysis specifically in patients who were not Hb responders as defined by the primary endpoint of ACTIVATE has not yet been reported


OBJECTIVE

• To assess changes in markers of hemolysis and erythropoiesis specifically in patients from the phase 3 ACTIVATE trial who did not achieve a Hb response as defined in the study protocol

METHODS

ACTIVATE study design

• The randomized, double-blind, placebo-controlled ACTIVATE study consisted of a 12-week dose-optimization period (5/20/50 mg twice daily) and a 12-week fixed-dose period (**Figure 1**); details have been previously reported¹¹

 80 adults (≥18 years) with PK deficiency who were not regularly transfused (≤ 4 transfusion episodes in the prior year; none in the prior 3 months) were randomized 1:1 to receive mitapivat or placebo

Analysis

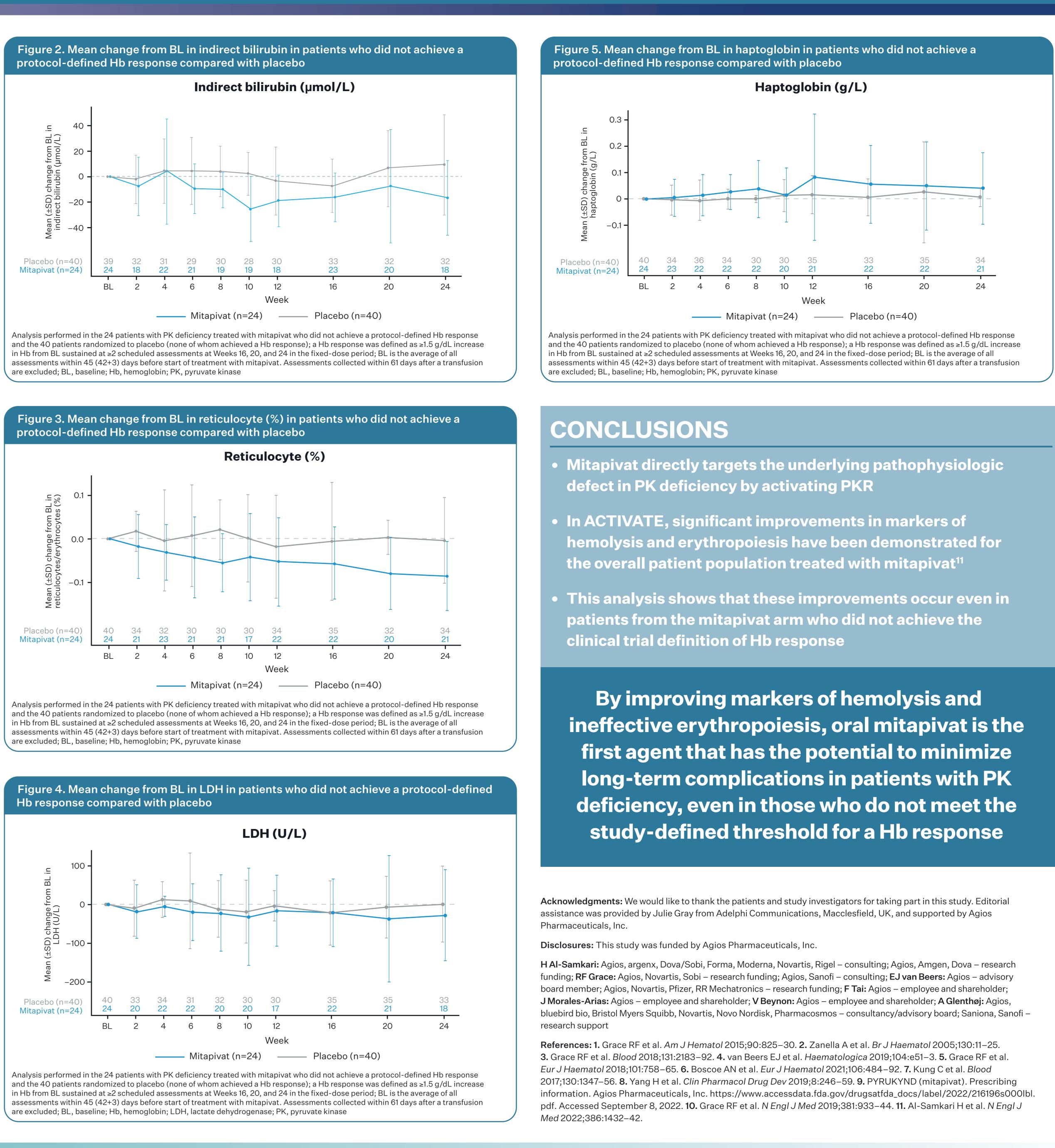
- Results from primary analyses have been previously reported¹¹
- This analysis compared hemolysis and erythropoiesis markers in patients treated with mitapivat who did not achieve the protocoldefined Hb response (defined as ≥ 1.5 g/dL increase in Hb from baseline [BL] sustained at ≥ 2 scheduled assessments at Weeks 16, 20, and 24 in the fixed-dose period) with those randomized to placebo

RESULTS

Baseline characteristics¹¹

- 80 patients were randomized 1:1 to receive mitapivat (N=40) or placebo (N=40)
- Mean Hb at BL was 8.6 g/dL

Primary endpoint: Hb response¹¹


• 16/40 patients (40%) in the mitapivat arm and 0/40 patients (0%) in the placebo arm achieved a Hb response (2-sided p<0.001)

Markers of hemolysis and erythropoiesis in protocol-defined non-responders

- Markers of hemolysis and erythropoiesis improved in patients randomized to mitapivat who did not achieve a protocol-defined Hb response, as shown by the average change from BL at Weeks 16, 20, and 24 (Table 1, Figures 2–5)
- Minimal or no average improvement from BL was seen in patients in the placebo arm at Weeks 16, 20, and 24 (**Table 1, Figures 2–5**)

Table 1. Average change from BL at Weeks 16, 20, and 24 in markers of hemolysis in protocol-defined non-responders in the ACTIVATE study

Marker	Mitapivat arm (n=24)	Placebo arm (n=40)
Indirect bilirubin, µmol/L		
BL mean (SD)	98.4 (68.4)	89.1 (61.8)
Mean change from BL (SD)	-12.7 (24.6)	3.0 (20.1)
Reticulocyte, %		
BL mean (SD)	0.48 (0.22)	0.40 (0.22)
Mean change from BL (SD)	-0.07 (0.07)	-0.00 (0.06)
LDH, U/L		
BL mean (SD)	292.8 (248.7)	260.0 (140.2)
Mean change from BL (SD)	-27.1 (106.5)	-8.7 (76.4)
Haptoglobin, g/L		
BL mean (SD)	0.10 (0.13)	0.08 (0.14)
Mean change from BL (SD)	0.05 (0.14)	0.01 (0.07)
BL, baseline; LDH, lactate dehydrogenase		

3644

