A phase 1 trial of AG-270 in patients with advanced solid tumors or lymphoma with homozygous MTAP deletion

Rebecca S Heist¹, Mrinal M Gounder², Sophie Postel-Vinay³, Frederick Wilson⁴, Elena Garralda⁵, Khanh Do⁶, Geoffrey I Shapiro⁶, Patricia Martin-Romano³, Gerburg Wulf⁷, Michael Cooper⁸, Caroline Almon⁸, Salah Nabhan⁸, Varsha lyer⁸, Yanwei Zhang⁸, Kevin M Marks⁸, Elia Aguado-Fraile⁸, Frank Basile⁸, Keith Flaherty¹, Howard A Burris⁸

¹Massachusetts General Hospital, Boston, MA, USA; ²Memorial Sloan Kettering Cancer Center, New Haven, CT, USA; ³Vall d'Hebron Institute of Oncology, Barcelona, Spain; ³Dana-Farber Cancer Center, Boston, MA, USA; ³Hebron, MA, USA; ⁴Hebron, MA, USA; ⁴Heb Beth Israel Deaconess Medical Center, Boston, MA, USA; Agios Pharmaceuticals, Inc., Cambridge, MA, USA; Sarah Cannon Research Institute, Nashville, TN, USA

BACKGROUND

- Homozygous deletion of MTAP, the gene encoding the metabolic enzyme methylthioadenosine phosphorylase, occurs in ~15% of human malignancies. 1.2
- MTAP deletion frequently coincides (~80% of cases) with the loss of cyclin-dependent kinase inhibitor 2A (CDKN2A), a well-known negative prognostic factor in cancer.
- Deletion of MTAP results in the accumulation of the enzyme's substrate, methylthioadenosine (MTA)
- Increased concentrations of MTA partially inhibit the activity of protein arginine methyltransferase 5 (PRMT5), while other methyltransferases are relatively unaffected.
- Inhibition of PRMT5 activity results in a reduction in symmetrically di-methylated arginine residues (SDMAs) on target proteins, many of which are involved in mRNA splicing.
- Further reduction of PRMT5 activity can be achieved through reductions in the concentration of its normal substrate, the methyl donor S-adenosylmethionine (SAM), via inhibition of the enzyme MAT2A (Figure 1).
- AG-270 is a first-in-class, oral, potent, reversible inhibitor of methionine adenosyltransferase 2A (MAT2A), the key enzyme responsible for SAM synthesis.

OBJECTIVE AND METHODS

 To report preliminary results from an ongoing, first-in-human, phase 1 trial of AG-270 in patients with advanced solid tumors with homozygous deletion of MTAP (Figure 2).

RESULTS

- As of Aug 16, 2019, 39 patients had been treated with AG-270 (Table 1).
- 36 discontinued AG-270 due to disease progression (22), clinical suspicion of disease progression (6), withdrawal by subject (4), adverse events (AEs) (2), death (1), other (1),
- Baseline characteristics are shown in Table 1

Table 4 Envallment and demographic

Dose	50 mg QD	100 mg QD	150 mg QD	200 mg QD	400 mg QD	200 mg BI
Patients, n	3	7	6	11	6	6
Baseline characteristic				N=39		
Age, median (range), years				65 (32–87)		
<60, n (%)					17 (44)	
≥60, n (%)					22 (56)	
Male sex, n (%)				21 (54)		
	n the basis of:					
CDKN2A deletion, n (%)				34 (87)		
MTAP deletion, n (%)				5 (13)		
Patients with	both CDKN2A	deletion and t	umor		00 (50)	
tissue evaluable for MTAP deletion by IHC, n (%)				22 (56)		
Patients with both CDKN2A deletion and MTAP				4E (CO)		
deletion by	IHC n (%)				15 (68)	
	or type, n (%)					
Bile duct ca					7 (18)	
Pancreatic	cancer				7 (18)	
Mesothelior	ma				4 (10)	
NSCLC					4 (10)	
Other cance	er type				17 (44)	
Number of lir	nes of prior the	rapy, n (%)				
One					12 (31)	
Two					9 (23)	
Three or more				18 (46)		

Pharmacokinetics

- Median time to maximum plasma concentration (t___) = 3-5 hr.
- Median half-life (t_{1/2}) = 12.5–28.2 hr.
- · Mean exposure increased in an approximately dose-proportional manner between 50 mg QD and 200 mg QD.
- Mean exposure was lower at 400 mg QD than 200 mg QD, possibly secondary to a reduction in oral bioavailability (Figure 4).
- Due to this observation, a dose of 200 mg BID was evaluated, which increased steady-state area under the plasma concentration-time curve (AUC) by 1.9-fold relative to a dose of 200 mg QD.

- Plasma SAM concentration at C1D15 decreased by 65-74% across doses of 50-200 mg QD and 200 mg BID (Figure 5).
- The smaller reduction in plasma SAM concentration (~54%) observed at 400 mg QD is consistent with the lower AG-270 exposure observed at this dose.
- An example of a patient with 39% SDMA reduction after 1 month of treatment with AG-270 at 50 mg QD is shown (Figure 6).
- Analysis of nine paired tumor biopsies by IHC showed decreases in levels of SDMA residues, consistent with MAT2A inhibition (Figure 7).
- The average (min, max) H-score reduction compared with baseline was 36.5% (-98.8%, +21.4%)

- · A summary of AEs is shown in Table 2.
- · Generalized erythematous rash in three patients, treated at 100 mg QD, 150 mg QD
- Onset during second week of treatment, resolved <1 week after AG-270 interruption - Successful rechallenge at a lower dose in two patients.

QD cohorts

- Increases in unconjugated bilirubin, starting at 100 mg QD:
- Consistent with UGT1A1 inhibition, exposure-dependent, reversible.
- · Mild myelosuppression, starting at 200 mg QD:
- Most consistently manifested as reversible thrombocytopenia (with or without leukopenia/anemia).

200 mg BID cohort

- · Reversible acute liver injury in two of six patients:
- Asymptomatic grade 3 and 4 increases in alanine aminotransferase, aspartate aminotransferase, and total bilirubin
- Outpatient treatment with oral steroids, leading to complete resolution
- Not clearly related to higher AG-270 systemic exposure.
- Grade 3 and 4 thrombocytopenia in two of six patients. · MTD was determined to be 200 mg QD.

CONCLUSIONS

- AG-270 is the first MAT2A inhibitor to be evaluated in humans.
- The MTD was determined to be 200 mg QD.
- DLTs included transient diffuse rashes, neutropenia and thrombocytopenia, and reversible acute liver injury.
- · AG-270 generates reductions in plasma SAM concentration and in levels of tumor SDMA at well-tolerated doses.
- Average reductions in plasma SAM concentration were similar between 50 and 200 mg QD, and within the range associated with maximum tumor growth inhibition in preclinical models (60-80%).
- Objective tumor response was uncommon in this group of patients with treatment-refractory malignancies.
 - However, a confirmed partial response was observed in a patient with a high-grade neuroendocrine carcinoma of the lung.

- AG-270 demonstrates improved efficacy in combination with taxanes in preclinical tumor models with homozygous MTAP deletion, relative to taxanes or AG-270 alone.4
- The next step in this phase 1 study will be to evaluate AG-270 in combination with standard taxane-based chemotherapy in patients with CDKN2A-null and/or MTAP-null cancers starting with an AG-270 dose of 100 mg QD (Figure 9).

