
AG-120, A First-in-Class Mutant IDH1 Inhibitor in Patients with Recurrent or Progressive IDH1 Mutant Glioma: Updated Results from the Phase 1 Non-Enhancing Glioma Population

Ingo K. Mellinghoff¹, Mehdi Touat², Elizabeth Maher³, Macarena I. De La Fuente⁴, Timothy F. Cloughesy⁵, Matthias Holdhoff⁶, Gregory M. Cote⁷, Howard Burris⁸, Filip Janku⁹, Raymond Huang⁷, Robert J. Young¹, Benjamin Ellingson⁵, Tara Nimkar¹⁰, Liewen Jiang¹⁰, Yuko Ishii¹⁰, Sung Choe¹⁰, Bin Fan¹⁰, Lori Steelman¹⁰, Katharine Yen¹⁰, Chris Bowden¹⁰, Susan Pandya¹⁰ and Patrick Y. Wen⁷

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Gustave Roussy, Villejuif, France;
 ³University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁴University of Miami, Miami, FL, USA;
 ⁵University of California, Los Angeles, CA, USA; ⁶Johns Hopkins University, Baltimore, MD, USA;
 ⁷Dana-Farber/Harvard Cancer Center, Boston, MA, USA; ⁸Sarah Cannon Research Institute, Nashville, TN, USA;
 ⁹MD Anderson Cancer Center, Houston, TX, USA; ¹⁰Agios Pharmaceuticals, Inc., Cambridge, MA, USA

Isocitrate Dehydrogenase (IDH) and Cancer

- Mutations in the metabolic enzymes IDH1 and IDH2 occur in several human malignancies, including leukemia (AML), cholangiocarcinoma, chondrosarcoma, and glioma
- IDH mutations change the function of the enzyme
 - neomorphic production of the oncometabolite D-2HG
 - epigenetic dysregulation and impaired cellular differentiation
 - → oncogenesis
- Recent regulatory approval for IDHIFA® (enasidenib), an IDH2 inhibitor, in relapsed/refractory AML

Clark O, Yen K, Mellinghoff IK. *Clin Cancer Res* 2016;22:1837 Copyright ©2016 American Association for Cancer Research

IDH Mutations and AG-120 in Glioma

- IDH mutations occur in >70% of low-grade gliomas (LGG) and ~ 5% of GBMs¹
- AG-120 (ivosidenib) is a first-in-class, oral, potent, reversible, targeted inhibitor of mutant
 IDH1 enzyme
- AG-120 is under clinical evaluation in an ongoing phase 1 dose escalation and expansion study of patients with IDH1-mutant advanced solid tumors (n=168), including glioma (n=66)^a
 - adults with previously treated WHO grade II, WHO grade III, WHO grade IV
 - contrast-enhancing (n=31) or non-enhancing (n=35) on brain MRI
 - preliminary safety and efficacy data presented previously²
- Here we report updated safety and efficacy data, and an exploratory volumetric growth rate analysis for the non-enhancing glioma patient population

AG120-C-002 Phase 1 Study Design

Dose escalation (n=60) including 20 gliomas¹

- IDH1-mutant (local testing) advanced solid tumors, including glioma
- Recurred, progressed or not responded to standard therapy
- 9/20 enhancing glioma
- 11/20 non-enhancing glioma

Dose expansion non-enhancing gliomas (n=24)

Other dose expansion cohorts (n=84)

- Cholangiocarcinoma, chondrosarcoma, solid tumors not eligible for other cohorts
- Includes 22 enhancing gliomas

Primary study objectives:

- Evaluate safety and tolerability
- Determine MTD and/or RP2D

Secondary study objectives:

- Pharmacokinetics and pharmacodynamics
- Preliminary clinical activity (ORR, PFS)

Exploratory:

- Change in tumor volumetric growth rate in non-enhancing glioma expansion cohort
- PD evaluation of tissue and plasma

Study Status: Non-Enhancing Glioma

- Glioma enrollment complete as of 16Jan2016 (n=66)
- 500 mg QD selected as expansion dose
- 35 pts with non-enhancing gliomas (escalation, n=11; expansion, n=24)
- Study remains ongoing as of data cutoff of 12May2017; median treatment duration for the non-enhancing glioma population is 16 months

	Dose level					
Disposition, n (%)	100 mg (n=0)	300 mg (n=2)	500 mg (n=28)	600 mg (n=1)	900 mg (n=4)	Total (N=35)
On treatment	0	0	15	0	3	18 (51)
Discontinued treatment	0	2	13	1	1	17 (49)
Disease progression	0	2	13	1	1	17 (49)

Data cutoff: 12May2017 5

Baseline Characteristics

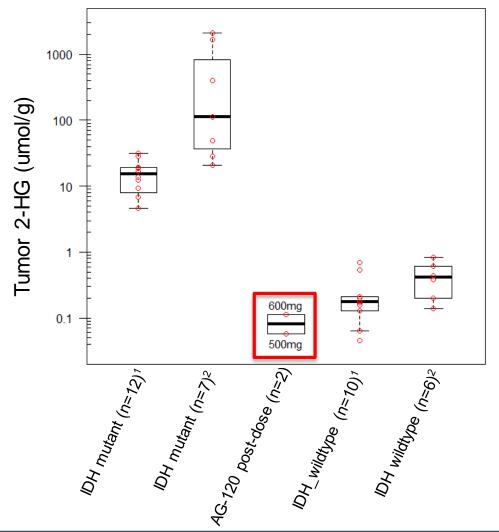
	Total treated (N=35) n (%)
Median age, years (range)	38 (21, 71)
Gender (M/F), n	23/12
ECOG status at baseline, n (%)	
0	17 (48.6)
1	18 (51.4)
IDH1-R132H mutation ^a	28 (80.0)
WHO tumor grade	
Grade II	24 (68.6)
Grade III	8 (22.9)
Grade IV	1 (2.9)
Unknown	2 (5.7)
1p19q co-deleted, n (% of those tested) ^b	10 (34.5)

^aAll patients had IDH1 mutation; other 20% included R132C, R132S and others ^bMissing for 6 patients (17% of total)

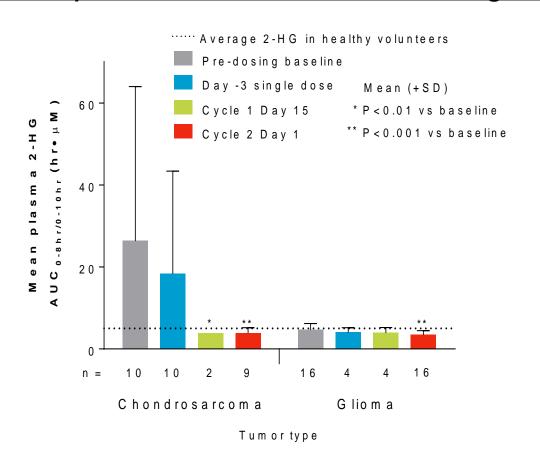
Data cutoff: 12May2017

Prior Therapies

	Total treated (N=35) n (%)
Prior radiation therapy, n (%)	20 (57.1)
Prior systemic therapies, n (%)	24 (68.6)
Median number of prior systemic therapies, n (range)	2 (1, 5)
1 prior systemic therapy, n (%)	12 (34.3)
≥ 2 prior systemic therapies, n (%)	12 (31.4)
Type of prior systemic therapy	
Temozolomide, n (%)	22 (62.9)
Bevacizumab, n (%)	2 (5.7)
Procarbazine/CCNU/vincristine, n (%)	1 (2.9)
Median time since last systemic therapy, months (range)	7.38 (1, 139.5)
Median duration of last systemic therapy, months (range) a	9.59 (0, 36.0)
Anticonvulsants at baseline, n (%)	26 (74.3)
Steroid use at baseline, n (%)b	1 (2.9)


Safety Summary

- No DLTs observed, MTD not reached
- No on-treatment deaths
- 32/35 (91%) patients experienced at least 1 AE; 7 (20%) experienced a Grade 3 or higher AE
 - Most common (>15%, all grades) AEs included headache (34%), diarrhea (26%), nausea and vomiting (each 20%), anemia, fatigue, hyperglycemia, neutrophil count decreased, seizure and upper respiratory infection (each 17%)
 - 2 patients experienced Grade 3 hypophosphatemia, no other Grade 3 or higher events were reported in more than 1 patient
- 5/35 (14%) patients experienced at least 1 SAE and all were deemed unrelated to study treatment
 - Seizure was reported in 2 patients; no other SAEs were reported in more than 1 patient

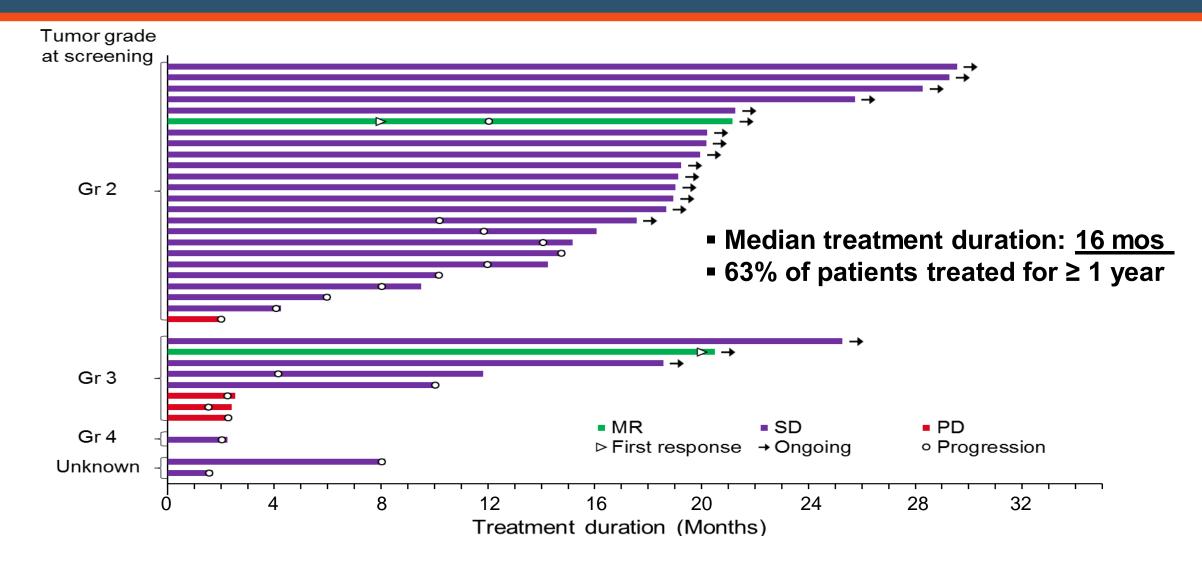

Data cutoff: 12May2017

Pharmacodynamic Analysis of AG-120

Tumor 2-HG suppression by AG-120

Baseline plasma 2-HG levels not elevated in glioma^a

^a Plasma data presented previously: Mellinghoff IK et al. Neuro-Oncology. 2016;18(Suppl6):vi12 ACTR-46 Dang et al. Nature 2009 462(7274): 739; ²Choi et al., Nat Med 2012 18(4) 624-629


Best Overall Response by Investigator

Best Overall Response ^a	N=35 n (%)
Minor response	2 (5.7) ^b
Stable disease	29 (82.9)
Progressive disease	4 (11.4)
Overall response rate	2 (5.7)

^aLGG patients in escalation phase assessed by RANO¹; LGG patients in expansion phase assessed by RANO LGG²

^b Minor responses (>25% but <50% decrease relative to baseline) not centrally confirmed

Treatment Duration by Grade Including Best Overall Response

Median PFS for ALL non-enhancing patients = 13 mos (not reached for WHO grade II subset)

Data cutoff: 12May2017

Exploratory Imaging: Effects on Glioma Growth Rates

Non-enhancing gliomas display slow but continuous growth,¹ the rate of which may correlate
with transformation and survival^{2,3}

Non-enhancing glioma expansion n=24

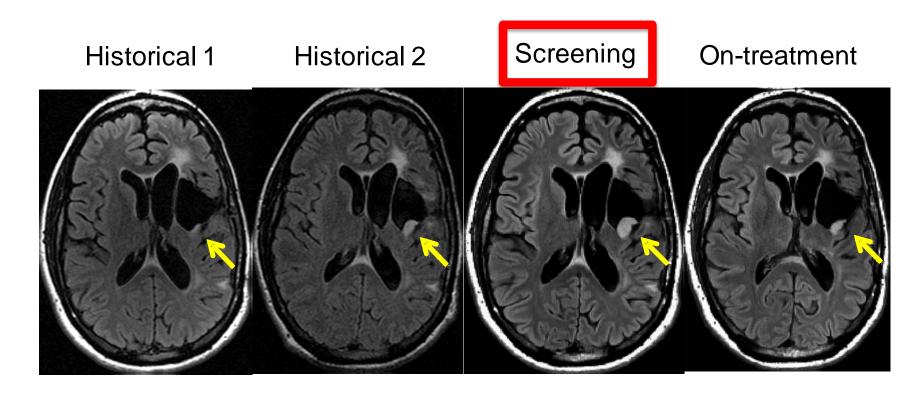
Study Inclusion Criteria

- IDH1-mutant; progression over ≤12 months
- ≥3 prior full sets of scans (not including screening), each separated by ≥2 months with ≤5 mm slice thickness and up to 1 mm interslice gap on either 2D T2 weighted image, 3D T2 weighted image, or FLAIR
- No tumor resection or RT <6 months prior to enrollment

239 MRI scans from 24 patients:

- 63 historical MRIs (prior to screening)
- ❖ 176 MRIs (screening and on AG-120)

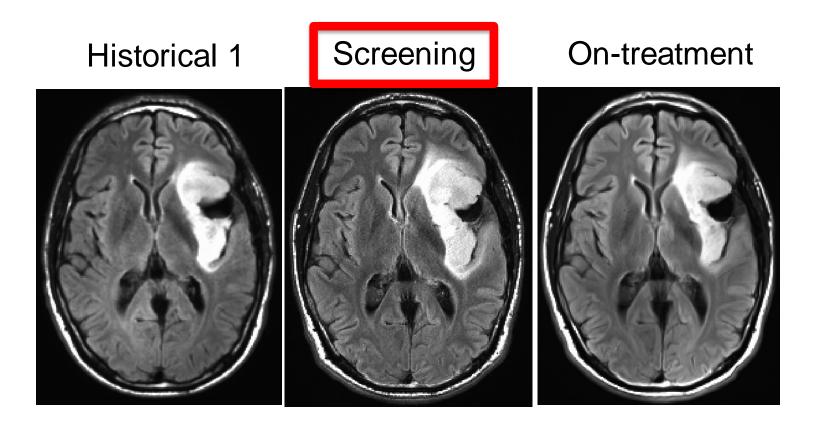
Case Study #1


- Anapl. Oligo, 1p19q CD
- Tumor Resection 2009
- Radiation 2010
- TMZ 2010-2012
- AG-120 Start 12/2015

H1 MRI: 7/2014

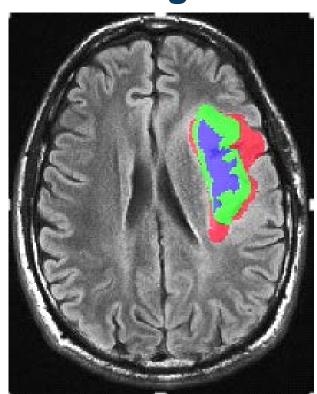
H2 MRI: 5/2015

Remains on AG-120 (17 mos @ cutoff)

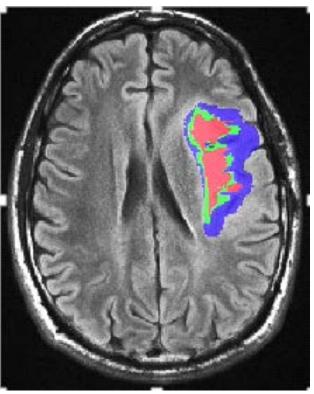

Best RANO response: SD

Case Study #2

- Diffuse Astrocytoma
- Tumor Resection 2009
- No Radiation
- No other therapy
- AG-120 Start 11/2015
 H1 MRI: 7/2013
- Remains on AG-120
 (18 mos @ cutoff)


 Best RANO response: SD

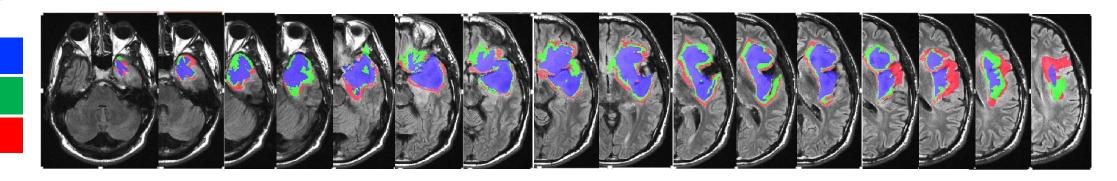
Case Study #2 Co-registered MRIs


Pre-treatment changes

Historical 1
Historical 2
Screening

Screening AG120_early cycle AG120_later cycle

On-treatment changes

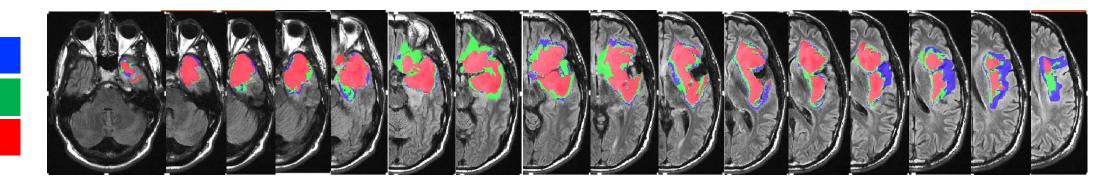

Case Study #2 Complete MRIs

Pre-treatment changes

Historical 1 -

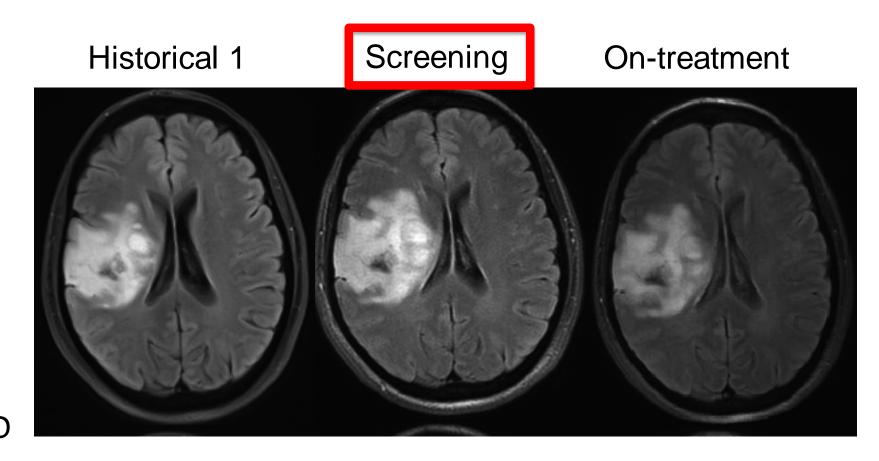
Historical 2 -

Screening -

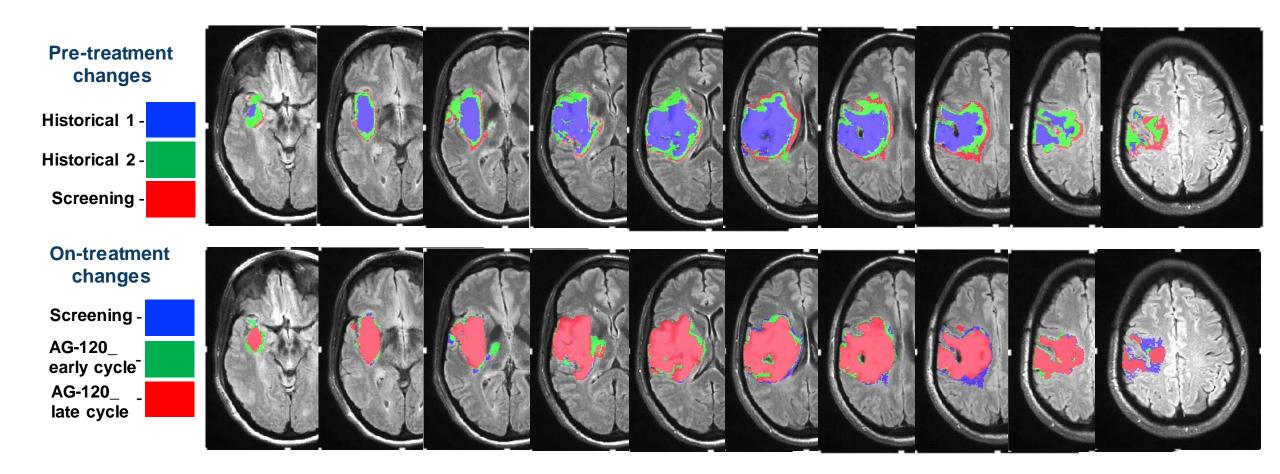


On-treatment changes

Screening -

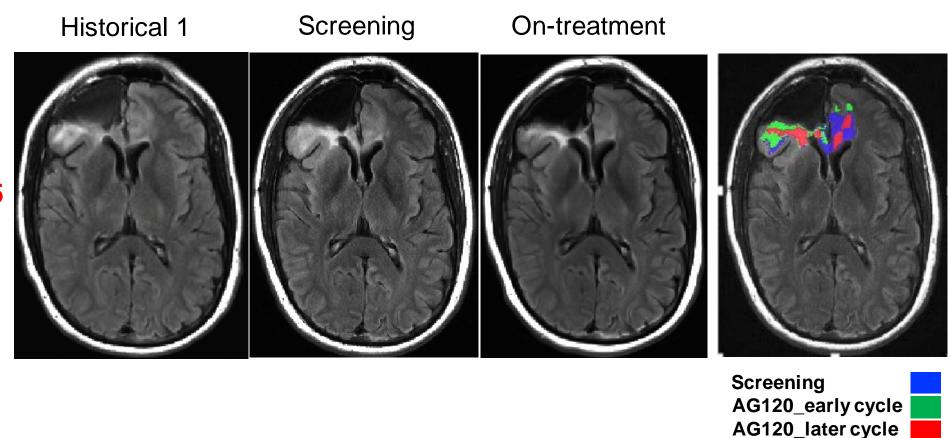

AG-120_ early cycle

AG-120_ _ late cycle



Case Study #3

- Oligodendroglioma1p19q co-del
- Biopsy 2007
- TMZ 2007-2008
- No Radiation
- AG-120 Start 10/2015
 H1 MRI: 10/2014
- Remains on treatment (18 mos @ cutoff)
 Best RANO response: SD



Case Study #3 Co-registered MRIs

Case Study #4

- Oligodendroglioma (1p19q codel)
- Tumor Resection 2011
- No further treatment
- AG-120 Start 12/2015
 H1 MRI:6/2013
- Remains on AG120 (17 mos @ cutoff) Best RANO response: SD

Exploratory Imaging: Effects of AG-120 on Glioma Growth Rates

Non-enhancing gliomas display slow but continuous growth,¹ the rate of which may correlate
with transformation and survival^{2,3}

Non-enhancing glioma expansion n=24

Study Inclusion Criteria

- IDH1-mutant; progression over ≤12 months
- ≥3 prior full sets of scans (not including screening), each separated by ≥2 months with ≤5 mm slice thickness and up to 1 mm interslice gap on either 2D T2 weighted image, 3D T2 weighted image, or FLAIR
- No tumor resection or RT <6 months prior to enrollment

239 MRI scans analyzed across 24 patients

- 63 historical scans prior to Screening
- 176 during treatment with AG-120

Method

- Pre-segmentation of T2/FLAIR
- Quantification of T2/FLAIR hyperintense volume
- Automatic calculation of bidimensional product
- Application of LGG RANO criteria and volumetric assessments
- Tumor growth rate estimates produced using mixed effect model

Volumetric Growth Rates Pre- and Post-AG120 Treatment

Volumetric growth rate all patients				
	Natural History Study Pre-treatment ^a (N=239 ^c)	Pre-AG120 (n=24)	Post-AG120 (n=24)	
Mean percent change (95% CI) for every 6 months ^b	28% (24%, 32%)	24% (12%, 37%)	11% (1%, 23%)	

Volumetric growth rate 1p19q intact subset				
	Natural History Study Pre-treatment ^a (N=73°)	Pre-AG120 (n=15)	Post-AG120 (n=15)	
Mean percent change (95% CI) for every 6 months ^b	34% (25%, 44%)	38% (19%, 60%)	14% (-1%, 31%)	

^aRetrospective centralized multi-center study of 239 patients with progressive non-enhancing IDH mutant LGG
Pre-treatment growth rate calculated using 3 MRI scans spanning minimum of 6 months prior to treatment using semi-automatic volumetric segmentation and mixed effect model (Presented by Huang et al. Abstract # 4809)

^bPercent change is derived based on the slope estimate from the mixed effect model

^cNumber of subjects is indicated. Some subjects may have had more than one qualifying set of pre-treatment scans included in analysis

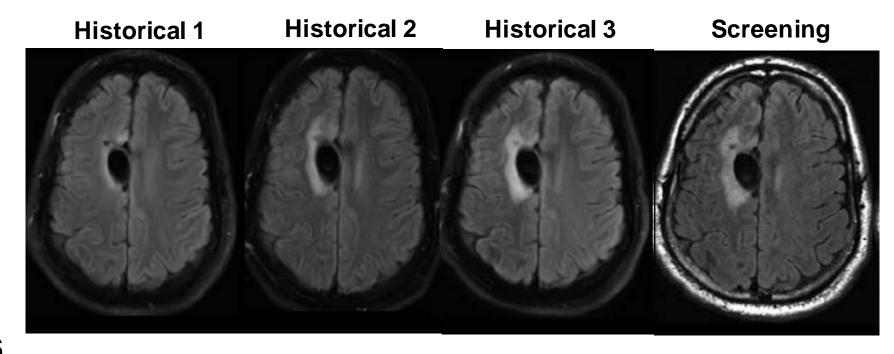
Confounding Effect of Prior Radiation

Oligodendroglioma (WHO II)(1p19q intact)

Resection: 2013

RT: Jun-July 2015

MRIs:


H1: 4/2015

H2: 8/2015

H3: 11/2015

Screen: 12/2015

Started AG-120 01/2016

Lessons From Image Analysis

- Retrieval of historical (i.e., pre-screening) MRIs critical to establish kinetics of T2/FLAIR changes
- Review of prior treatment history (in particular, RT and surgery) critical to interpret clinical significance of T2/FLAIR changes
- Further development necessary in order to broadly implement methods for quantification and analyses of 3D tumor volumes and growth rates
- Specific imaging guidelines, methods, and study inclusion criteria are necessary for implementation of a standardized volumetric analysis approach

Summary

- AG-120 is well tolerated in patients with non-enhancing glioma
- AG-120 results in prolonged stable disease in this pretreated glioma population with a median treatment duration of 16 months and warrants further clinical evaluation
 - 51% of patients still on treatment
 - Preliminary results suggest a reduction in tumor growth rates
- Further refinement of volumetric growth rate methodology is needed
- Preliminary data suggest that AG-120 suppresses 2-HG in tumors; this will be further evaluated in a planned perioperative study

Acknowledgments

- We would like to thank the principal investigators, their institutions and most importantly the patients who took part in this study
- This clinical study was funded by Agios Pharmaceuticals