The MAT2A inhibitor AG-270 combines with both taxanes and gemcitabine to yield enhanced antitumor activity in patient-derived xenograft models

Marc L Hyer, Peter Kalev, Mark Fletcher, Chi-Chao Chen, Elia Aguado-Fraile, Everton Mandley, Sheila Newhouse, Max Lein, Raj Nagaraja, Yisem Tuncay, Josh Murtele, Scott A Biller, Kevin M Marks, Katya Marjon

Agios Pharmaceuticals, Inc., Cambridge, MA, USA
Marc.Hyer@agios.com

The MAT2A inhibitor AG-270 disrupted splicing and altered gene expression in vivo.

BACKGROUND

- AG-270 is a first-in-class, orally-available inhibitor of methyltransferase-like 1 (METTL1) currently being evaluated in a phase I trial in patients with advanced solid tumors and lymphoma with METTL1 (or METTL1-like) defects.

RESULTS

- A large-scale syngeneic screen created potential syngeneic combinations (Figure 2).

OBJECTIVES

- To identify combinatorial partners for AG-270, as a single agent in vivo using a syngeneic mouse model.

METHODS

- A 41-taxane screen tested 21 combinatorial candidates in 27 syngeneic cell lines, with survival curve responses performed at necropsy using the Caliper Cell-Titer96 assay.

CONCLUSIONS

- A cell-based screen identified taxanes and gemcitabine as therapeutic agents that could potentiate combination benefit with AG-270.

REFERENCES

Some of these data were previously presented in Kalev P et al. 2018;2:401–4.
This work was funded by Agios Pharmaceuticals, Inc.
These preclinical findings have inspired an ongoing phase 1 study exploring AG-270 combined with docetaxel: dosing of the first patient has been completed.

Figure 1. Targeting MAT2A in cancer with AG270. MAT2A inhibitor--induced chromosomal split/aneuploidies in NCI-HCT116 control and MTAP--/-- xenograft tumors.

Figure 2. AG-270 synergizes with autotaxin and gemcitabine in a cell-based assay.

Figure 3A. MAT2A inhibitor--induced detained introns included genes involved in the DNA damage response.

Figure 3B. Donor intron--containing transcripts fail to export into the cytosol and thus are not translated.

Figure 4. AG-270 enhanced docetaxel in an NSCLC (SCC) MTAP--/-- PDX model.

Figure 5. AG-270 enhanced docetaxel in an NSCLC (SCC) MTAP--/-- PDX model.

Figure 6. AG-270 enhanced docetaxel in an NSCLC (SCC) MTAP--/-- PDX model.

Table 1. Efficacy data summary of AG-270 and gemcitabine, alone and combined.

Table 2. Efficacy data summary of AG-270 and gemcitabine, alone and combined.

Figure 7. AG-270 enhanced docetaxel therapy in an NSCLC (SCC) PDX mouse model.

Table 3. Efficacy data summary of AG-270 and gemcitabine, alone and combined.

Presented at the American Association for Cancer Research Virtual Annual Meeting II, June 22–24, 2020