Ivosidenib (AG-120) induces durable remissions and transfusion independence in patients with IDH1-mutant relapsed/refractory myelodysplastic syndrome in a phase 1 dose escalation and expansion study

James M Foran¹, Courtney D DiNardo², Justin M Watts³, Eytan M Stein⁴, Stéphane de Botton⁵, Amir T Fathi⁶, Gabrielle T Prince⁷, Anthony S Stein⁸, Richard M Stone⁹, Prapti A Patel¹⁰, Martin S Tallman⁴, Sung Choe¹¹, Hongfang Wang¹¹, Vickie Zhang¹¹, David Dai¹¹, Bin Fan¹¹, Katharine E Yen¹¹, Stephanie M Kapsalis¹¹, Denice Hickman¹¹, Samuel V Agresta¹¹, Hua Liu¹¹, Bin Wu¹¹, Eyal C Attar¹¹, Hagop M Kantarjian²

BACKGROUND

- Somatic mutations in the isocitrate dehydrogenase 1 (IDH1) gene occur in ~3% of patients with myelodysplastic syndrome (MDS) and have been linked with increased transformation to acute myeloid leukemia (AML).^{1,2}
- The mutant IDH1 (mIDH1) enzyme catalyzes the reduction of alpha-ketoglutarate to the oncometabolite D-2-hydroxyglutarate (2-HG),³ and the resulting 2-HG accumulation leads to
- epigenetic dysregulation and impaired cellular differentiation.⁴⁻⁶ • Ivosidenib (AG-120) is a first-in-class, oral, potent, targeted, small-molecule inhibitor of the mIDH1 enzyme.
- Ivosidenib suppresses the production of 2-HG. leading to clinical responses via differentiation of malignant cells.
- · Ivosidenib is approved in the US for the treatment of AML with a susceptible IDH1 mutation as detected by an FDA-approved test in adults with newly diagnosed AML who are ≥75 years of age or who have comorbidities that preclude the use of intensive induction chemotherapy and in adults with relapsed or refractory (R/R) AML.

OBJECTIVE

To report safety and efficacy data from patients with R/R MDS enrolled in the first-in-human phase 1 study of ivosidenib in patients with mIDH1 advanced hematologic malignancies.

METHODS

Figure 1. Study design

Single-arm, open-label, phase 1, multicenter trial (ClinicalTrials.gov NCT02074839)⁶

ose expansion (n=180) lete: 500 mg QD in continuous 28-day cycles Dose escalation R/R AML in 2nd+ relapse, relapse after SCT, refractory to induction or reinduction, or relapse within 1 year, n=126 2 Untreated AML not eligible for SOC, n=25 Oral ivosidenib daily continuous 28-day 3 Other non-AML mIDH1 R/R advanced hematologic malignancies, n=11 Doses included 100 mg E 300, 500, 800, 1200 mg (4 Other R/R AML not eligible for Arm 1, n=18

BID = twice daily: QD = once daily: SCT = stem cell transplant: SOC = standard of car

- · Patients with R/R MDS were eligible for study treatment.
- The objective response rate (ORR) for MDS was defined as complete remission (CR) + partial remission (PR) + marrow CR (mCR), per the International Working Group (IWG) 2006 MDS response criteria.
- Baseline co-occurring mutations were assessed using a targeted next-generation sequencing panel that detects common variants in hematologic malignancies.
- mIDH1 variant allele frequency (VAF) in bone marrow mononuclear cells was detected using BEAMing Digital PCR (Sysmex Inostics: lower limit of detection for mIDH1 0.02-0.04%).
- The data cutoff date for this analysis was November 2, 2018.

RESULTS

- Safety and efficacy data are presented for the patients with R/R MDS in expansion Arm 3 (n=9) and in dose escalation whose starting dose was 500 mg QD (n=3).
- Three patients remained on treatment at data cutoff · Six patients discontinued treatment due to progressive disease (PD).
- · One patient discontinued treatment for stem cell transplant.
- Two patients remain in survival follow-up; one remains in post-transplant follow-up.
- The baseline characteristics of the 12 patients with R/R MDS are shown in Table 1.
- Median treatment duration was 11.4 months (range 3.3-42.5).
- The majority of adverse events (AEs) were grade 1-2 (Table 2)
- No AEs led to permanent discontinuation of treatment.

- AEs of interest were managed using standard-of-care treatments and ivosidenib dose modification as required (Table 3)
- · Ivosidenib induced durable responses (Table 4, Figure 2).
- There was an improvement in mean neutrophil and hemoglobin values, and platelets were stable considering the wide range at baseline (Figure 3).
- Among five patients who were transfusion dependent at baseline, four became transfusion independent for ≥56 days on treatment (Figure 4).
- The most frequent co-occurring mutations and mutational
- burden by clinical response are shown in Figure 5. Mutation clearance was observed in two patients
- (Table 5)

Table 1. Baseline characteristics

Characteristic	R/R MDS 500 mg (n=12)
Women / men, n	3/9
Age, years, median (range) Age category, years, n (%)	72.5 (52–78)
<60 60 to <75 ≥75	1 (8.3) 6 (50.0) 5 (41.7)
ECOG PS at baseline, n (%) 0 1 2	4 (33.3) 6 (50.0) 2 (16.7)
Prior therapies, ^a n (%) Intensive chemotherapy Hypomethylating agent Investigational therapy Stem cell transplant	3 (25.0) 9 (75.0) 3 (25.0) 1 (8.3)
Number of prior therapies, median (range) 1 prior therapy, n (%) 2 prior therapies, n (%) ≥3 prior therapies, n (%)	1 (1–3) 7 (58.3) 4 (33.3) 1 (8.3)
Cytogenetic risk status by investigator, n (%) Favorable Intermediate Diploid Poor Unknown/missing	1 (8.3) 4 (33.3) 4 (33.3) 5 (41.7) 2 (16.7)
/DH1 mutation type, ^b n (%) R123C R132H R132G /DH1 VAF, ^b median (min, max)	5 (55.6) 3 (33.3) 1 (11.1) 30.9 (2.8, 47.3)
Baseline hematologic parameters, median (min, max) Neutrophils, 10 ⁹ /L Hemoglobin, g/dL Platelets, 10 ⁹ /L Bone marrow blasts, %	0.53 (0.08, 5.66) 8.6 (6.7, 11.4) 149.5 (18.0, 660.0) 5.5 (0.0, 19.0)
Baseline transfusion dependent, n (%) Red blood cells Platelets Any	5 (41.7) 1 (8.3) 5 (41.7)

ECOG PS = Eastern Cor tive Oncology Group Performance Stat

Table 2. Most common AEs (occurring in ≥20% of patients with R/R MDS) regardless of causality

	R/R MDS 50	R/R MDS 500 mg (n=12)		
	Any grade, n (%)	Grade ≥3, n (%)		
Back pain	4 (33.3)	2 (16.7)		
Diarrhea	4 (33.3)	0		
Fatigue	4 (33.3)	1 (8.3)		
Rash	4 (33.3)	0		
Anemia	3 (25.0)	2 (16.7)		
Arthralgia	3 (25.0)	1 (8.3)		
Decreased appetite	3 (25.0)	0		
Dyspnea	3 (25.0)	0		
Hypokalemia	3 (25.0)	0		
Pruritus	3 (25.0)	0		
Hypotension	3 (25.0)	0		
Urinary tract infection	3 (25.0)	0		

Table 3. Investigator-reported AEs of interest

AEs of interest	R/R MDS 500 mg (n=12)		
	n	Details	
IDH differentiation syndrome (all grades)	1	Grade 2 event Resolved without sequelae Study drug was held Managed with corticosteroids Best response for this patient was mCR	
Grade ≥3 leukocytosis ^a	0	 No grade ≥3 events reported 	
Grade ≥3 ECG QT prolonged	0	 No grade ≥3 events reported Medications causing QT prolongation, such as antifungals and fluoroquinolone anti-infectives, were allowed on study with monitoring 	

60.0%

61.4%

12 months

NE = not es

R

Presented at the 24th Congress of the European Hematology Association (EHA), June 13–16, 2019, Amsterdam, the Netherlands

¹Mayo Clinic, Jacksonville, FL, USA; ²University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Sylvester Comprehensive Cancer Center, Miami, FL, USA; ⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁵Institut Gustave Roussy, Villejuif, France; ⁶Massachusetts General Hospital Cancer Center, Boston, MA, USA; ⁷Johns Hopkins University, Baltimore, MD, USA; ⁶City of Hope Medical Center, Duarte, CA, USA; ⁹Dana-Farber Cancer Institute, Boston, MA, USA; ¹¹Agios Pharmaceuticals, Inc., Cambridge, MA, USA

gure 5. Most frequent co-occurring mutations and mutatio burden by clinical response: R/R MDS 500 mg (n=11)

> single patient, arranged by best overall responses s and shaded by VAF. No significant association s and s a statement of the stateme no bone marrow data were available (only peripheral blood

Table 4. Responses

	R/R MDS 500 mg (n=12)
ORR, n (%) [95% CI]	11 (91.7) [61.5, 99.8]
Time to first response, months, median (range)	1.9 (1.0–2.8)
Duration of response, months, median [95% CI]	21.4 [2.3, NE]
Best response, n (%) CR PR mCR SD PD	5 (41.7) 1 (8.3) 5 (41.7) 0 1 (8.3)
CR rate, n (%) [95% CI]	5 (41.7) [15.2, 72.3]
Time to CR, months, median (range)	1.9 (1.0–5.6)
Duration of CR, months, median [95% CI]	NE [2.8, NE]

Responses reported by investigators using IWG 2006 MDS resp SD = stable disease

Table 5. IDH1 mutation clearance

	R/R MDS 500 mg (n=12)		
	n	IDH1 mutation clearance, ^a n	
CR	5	1	
Other			
Non-CR responder	6	1	
Nonresponder	1	0	

³Defined as a reduction in m/DH1 VAF to below the limit of detection of 0.02–0.04% (2–4×10⁻⁴) by digital PCR for at leas one on-study time point

CONCLUSIONS

- In this molecularly defined mIDH1 R/R MDS patient population, ivosidenib induced durable responses:
- CR rate 42%, median duration not estimable
- ORR 92%, median duration 21.4 months.
- Additional benefits:
- Conversion from transfusion dependence to independence, and maintenance of independence
- Mutation clearance was observed in two patients (1 CR and 1 mCR).
- Ivosidenib was well tolerated
- Differentiation syndrome occurred in one patient with MDS and was managed with standard-of-care treatments and ivosidenib dose hold
- There were no grade ≥3 events of leukocytosis or ECG QT prolongation in the MDS population.
- · On the basis of these data, future studies of patients with mIDH1 MDS are in development

Acknowledgments

We would like to thank the patients who took part in this study, the principal investigators, their staff, and their institutions.

Disclosures

This study was funded by Agios Pharmaceuticals, Inc

DISCIOSUTES
This study was funded by Agios Pharmaceuticals, Inc.
JMF: Agios – research funding. CDD: Agios, Celgene – consultant or advisor; AbbVie, Agios, Bayer, Celgene, Karyopharm, Medimmune – honoraria; Agios, AbbVie, Celgene, Daiichi Sankyo – research funding. JMW: Celgene, Jazz Pharmaceuticals – speaker bureau; Takeda – research funding. EMS: AbbVie, Agios, Astellas, Bayer, BioLineRx, Celgene, Daiichi Sankyo, Novartis, Prizer, PTO Therapeuticas – speaker funding; AbWV, Astellas, Celgene, Syros Pharmaceuticals – consultant or advisor role, Astellas, Celgene, Daiichi Sankyo, Novartis, Syros Pharmaceuticals – research funding; AbbVie, Astellas, Celgene, Daiichi Sankyo, Novartis, Syros Pharmaceuticals – research funding; AbbVie, Astellas, Celgene, Daiichi Sankyo, Novartis, Syros Pharmaceuticals – travel expenses; Auron Therapeutics – stock/ownership interest. SdB: AbbVie, Agios, Bayer, Carthagenetics, Celgene, Forma Therapeutics, Novartis, PTizer, Pierre Fabre, Seattle Genetics, Servier – honoraria; Agios, Bayer, Carthagenetics, Novaris, PTizer, Pierre Fabre, Seattle Genetics, Celgene, Forma Therapeutics, Novaris, PTizer, Pierre Fabre, Seattle Genetics, Servier – travel expenses, ATE: Agios – honoraria and travel expenses; Seattle Genetics – honoraria and research funding; Celgene, Exelixis, Takeda – research funding; AbaVie, Agios, Colegone, Formar Therapeutics, Novaris, Oteor Pharmaceuticals – honoraria, aGTP: no conflict of interest to disclose. ASS: Amgen, Celgene – consultant MS: AbbVie, Adiminum Pharmaceuticals, Agios, Angen, Argenx, Arog, Astellas, AstraZeneca, Celgene, Cormerstone, Jazz
Pharmaceuticals, Macrogenics, Novartis, Otsuka, Pfizer, Roche/Genentech, Stemline Therapeutics, Takeda – consultant or advisor, AbbVie, AbbVie, Arog, BioLineRx, Biosight, Cellerant, Davichi-Sankyo, Detta-Pi Pharma, KAHR, NOHLA Therapeutics, Oreanix, Rigel – consultant/advisor and speaker bureau; DAVA Oncology, France Foundation – honoraria. MS: AbbVie, Arog, BioLineRx, Biosight, Cellerant, Davic

Editorial assistance was provided by Helen Varley, PhD, CMPP, Excel Medical Affairs, Horsham, UK, and supported by Agios.

References

- DiNardo CD et al. Leukemia 2016;30:980-4.
- 2. Medeiros BC et al. Leukemia 2017;31:272-81. 3. Dang L et al. Nature 2009:462:739-44.
- 4. Lu C et al. Nature 2012;483:474-8.
- 5. Saha SK et al. Nature 2014;513:110-4.
- 6. Xu W et al. Cancer Cell 2011;19:17-30.
 7. Popovici-Muller J et al. ACS Med Chem Lett 2018;9:300-5.
- 8. DiNardo CD et al. N Engl J Med 2018;378:2386-98

