Ivosidenib (AG-120) in patients with *IDH1*-mutant relapsed/refractory myelodysplastic syndrome: Updated enrollment of a phase 1 dose escalation and expansion study

James M Foran¹, Courtney D DiNardo², Justin M Watts³, Eytan M Stein⁴, Stéphane de Botton⁵, Amir T Fathi⁶, Gabrielle T Prince⁷, Anthony S Stein⁸, Richard M Stone⁹, Prapti A Patel¹⁰, Martin S Tallman⁴, Hongfang Wang¹¹, Vickie Zhang¹¹, Bin Fan¹¹, Katharine E Yen¹¹, Abdulafeez Oluyadi¹¹, Sumita Rai¹¹, Hua Liu¹¹, Bin Wu¹¹, Thomas Winkler¹¹, Hagop M Kantarjian²

¹Mayo Clinic, Jacksonville, FL, USA; ²University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁶Institut Gustave Roussy, Villejuif, France; ⁶Massachusetts General Hospital Cancer Center, Boston, MA, USA; ⁷Johns Hopkins University, Baltimore, MD, USA; ⁸City of Hope Medical Center, Duarte, CA, USA; ¹Agios Pharmaceuticals, Inc., Cambridge, MA, USA;

BACKGROUND

- Somatic mutations in the isocitrate dehydrogenase 1 (IDH1) gene occur in ~3% of patients with myelodysplastic syndrome (MDS) and have been associated with increased transformation to acute myeloid leukemia (AML).1,2
- The mutant IDH1 (mIDH1) enzyme catalyzes the reduction of alpha-ketoglutarate to the oncometabolite D-2-hydroxyglutarate (2-HG),³ and the resulting 2-HG accumulation leads to epigenetic dysregulation and impaired cellular differentiation.⁴⁻⁶
- · Ivosidenib (AG-120) is a first-in-class, oral, potent, targeted, small-molecule inhibitor of the mIDH1 enzyme.
- Ivosidenib suppresses the production of 2-HG, leading to clinical responses via differentiation of malignant cells.
- Ivosidenib is approved in the US for the treatment of AML with a susceptible IDH1 mutation as detected by an FDA-approved test in adults with newly diagnosed AML who are ≥75 years of age or who have comorbidities that preclude the use of intensive induction chemotherapy and in adults with relapsed or refractory (R/R) AML.

Phase 1 study

· The first-in-human, phase 1 dose escalation and expansion study of ivosidenib (NCT02074839) enrolled adults with mIDH1 advanced hematologic malignancies, including R/R MDS. The study is ongoing (Figure 1).8

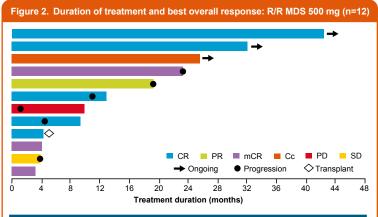
Figure 1. Study design

Single-arm, open-label,	phase 1, multicenter trial (ClinicalTrials.gov NCT02074839)8
Dose escalation (n=78)	Dose expansion (n=180) Enrollment complete: 500 mg QD in continuous 28-day cycles
Patients with mIDH1+ advanced hematologic	R/R AML in 2nd+ relapse, relapse after SCT, refractory to induction or reinduction, or relapse within 1 year, n=126
malignancies Oral ivosidenib daily in continuous	2 Untreated AML not eligible for standard of care, n=25
28-day cycles Doses included 100 mg BID,	3 Other non-AML m/DH1 R/R advanced hematologic malignancies, n=11
300, 500, 800, 1200 mg QD	4 Other R/R AML not eligible for Arm 1, n=18

BID = twice daily; QD = once daily; SCT = stem cell transplant

- · In the initial phase of the study, 12 patients with R/R MDS received 500 mg ivosidenib QD orally9
- Nine patients in expansion Arm 3 and three patients in dose escalation whose starting dose was 500 mg QD
- Enrollment was completed on May 8, 2017.
- As of the data cutoff (November 2, 2018), three patients remained on treatment:
- Six patients discontinued treatment owing to progressive disease (PD).
- One patient discontinued treatment for SCT.
- Two patients remain in survival follow-up: one remains in posttransplant follow-up Patient characteristics:
- 75.0% were male
- Median (range) age was 72.5 (52–78) years; 41.7% were ≥75 years of age.
- Median (range) number of prior therapies was 1 (1–3).
- Nine patients (75.0%) had received prior treatment with a hypomethylating agent.
- Transfusion dependent at baseline: 5 (41.7%) red blood cells, 1 (8.3%) platelets, 5 (41.7%) any
- Safety
- Adverse events (AEs) of any grade, irrespective of causality, occurring in ≥20% of the 12 patients were:
- Back pain, diarrhea, fatigue, and rash (n=4 each, 33.3%)
- Anemia, arthralgia, decreased appetite, dyspnea, hypokalemia, hypotension, pruritus, and urinary tract infection (n=3 each, 25.0%)
- · No AEs led to permanent discontinuation of treatment.

Efficacy


- · Responses reported by investigators were assessed according to International Working Group (IWG) 2006 criteria for MDS (Table 1 and Figure 2):
- Five patients achieved complete remission (CR) (41.7%: 95% Cl 15.2%, 72.3%) 60% remained relapse free at 12 months.
- Median duration of CR was not estimable (NE) for these patients (95% CI 2.8 months, NE).
- Nine patients were transfusion independent for ≥56 days during study treatment (Table 2).

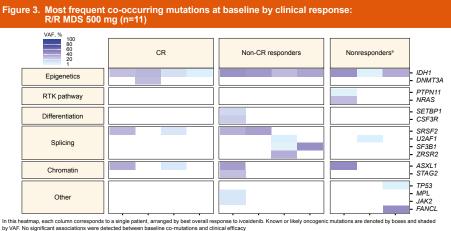
- · Most frequent co-occurring mutations at baseline by clinical response are shown in Figure 3
- Mutation clearance was observed in one of the five patients who achieved CR (Table 3).
- Median (range) treatment duration was 11.4 (3.3-42.5) months

Table 1. Responses reported by investigators using the IWG 2006 MDS response

Response parameter	R/R MDS 500 mg (n=12)
ORR, n (%) [95% CI]	9 (75.0) [42.8, 94.5]
Time to first response, months, median (range)	1.9 (1.0–2.8)
Duration of response, months, median [95% CI]	21.4 [2.3, NE]
Best response, ^a n (%)	
CR	5 (41.7)
PR	1 (8.3)
mCR	3 (25.0)
SD	1 (8.3)
PD	1 (8.3)
CR rate, n (%) [95% CI]	5 (41.7) [15.2, 72.3]
Time to CR, months, median (range)	1.9 (1.0–5.6)
Duration of CR, months, median [95% CI]	NE [2.8, NE]

plete cytogenetic response; mCR = complete response in marrow; ORR = overall response rate; PR = partial response; SD = stable dise

3, NE] 21.4 [2.3, NE]
0% 76.2%
0% 63.5%


Table 2. Transfusion status at baseline and post baseline in patients with R/R MDS receiving 500 mg dose (n=12)

		Post baseline ^a	
		Transfusion dependent (n=3)	Transfusion independent (n=9)
Baseline	Transfusion dependent (n=5)	1	4
Bas	Transfusion independent (n=7)	2	5

Table 3 IDH1 mutation clearance

	R/R MDS 500 mg (n=12)		
	n	IDH1 mutation clearance, ^a n	
CR	5	1	
Other			
Non-CR responder	4	0	
Nonresponder	3	1	

10-4) by digital PCR for at least one on-study time point

by VAF. No significant associations were detected between baseline co-mutations and clinical efficacy One patient with CR was excluded because no bone marrow data were available (only peripheral blood RTK = receptor trystine kinase

I = receptor tyrosine kinas udes Cc response

Key inclusion criteria

≥18 years of age an mIDH1 inhibitor and progressed on therapy · R/R disease after treatment with standard-of-care agents for MDS Patients with documented AML (≥20% bone marrow or peripheral blood blasts) Documented mIDH1-R132 by central laboratory testing during screening Patients who have undergone HSCT within 60 days of their first dose of ivosidenib or Bone marrow blasts >5% and/or transfusion patients receiving immunosuppressive therapy dependence post HSCT at screening, or with clinically Platelet count of ≥20,000/µL significant graft-versus-host disease Adequate hepatic function (total bilirubin ≤1.5 × Patients who received systemic anticancer ULN, aspartate aminotransferase, alanine therapy or radiotherapy <14 days prior to first aminotransferase, and alkaline phosphatase dav of study druga ≤3.0 × ULN) and renal function (serum creatinine Patients who received an investigational agent ≤2.0 × ULN or creatinine clearance >40 mL/min) <14 days prior to first day of study drug ECOG PS score of 0–2 Treatment with ivosidenib until disease Ivosidenib 500 mg QD orally 28-dav progression, development ➛ ↦ safety Days 1 to 28 of 28-day cycles of unacceptable toxicity. N≈23 follow-up HSCT, or other prespecified end-of-treatment criteria Primary objectives Secondary objectives Exploratory objective Safety · Pharmacokinetics Pharmacodynamic effects of Tolerability Pharmacokinetic/pharmacodynamic ivosidenib · Clinical activity relationship of ivosidenib and 2-HG

Safety/tolerability: Monitoring of AEs (including SAEs and AEs leading to discontinuation), safety laboratory parameters, physical examination findings, vital signs, 12-lead ECGs, ECHO/MUGA scan,^b and ECOG PS Clinical activity: Serial blood and bone marrow sampling to determine response to treatment on the basis of modified IWG response criteria in myelodysplasia

Pharmacokinetics and pharmacodynamics: Serial blood sampling for determination of concentration-time profiles of ivosidenib and blood and bone marrow sampling for determination of 2-HG levels

a is allowed prior to enrollment and after the start of ivosidenib for the control of peripheral leukemic blasts in patients with leukocytosis (e.g. white blood cell counts >30.000/uL

Presented at the 61st American Society of Hematology (ASH) Annual Meeting, December 7–10, 2019, Orlando, FL, USA

Figure 4. Design of MDS sub-study in patients with mIDH1 R/R MDS

Key exclusion criteria

· Patients who previously received treatment with

SUB-STUDY DESIGN

- This is a sub-study of the phase 1 dose escalation and expansion study, enrolling patients with m/DH1 R/R MDS (Figure 4).
- In this population of patients with mIDH1 R/R MDS, the objectives of this study are:
- Primary: to assess the safety, tolerability, and clinical activity of ivosidenib 500 mg
- Secondary: to characterize the pharmacokinetics of ivosidenib and to evaluate the pharmacokinetic/ pharmacodynamic relationship of ivosidenib and 2-HG.
- Exploratory: to assess the pharmacodynamic effects of ivosidenih

SUMMARY AND CURRENT STATUS

Summarv

- · The favorable efficacy and safety of ivosidenib in the small population of patients with mIDH1 R/R MDS in the phase 1 clinical study of patients with mIDH1 hematological malignancies supports further evaluation in this sub-study.
- · This sub-study will evaluate the efficacy and safety of ivosidenib in ~23 patients with m/DH1 R/R MDS
- · Further information is available at https://clinicaltrials.gov/ct2/ show/NCT02074839.

Study status

- · Patients are being recruited from 22 sites in the US and France.
- Contact medinfo@agios.com.

Acknowledgment

We would like to thank the patients taking part in this study, the principal investigators, their staff, and their institution

This study is funded by Agios Pharmaceuticals, Inc.

JMF: Agios - honoraria and research funding. CDD: AbbVie, Agios, Celgene, Daiichi Sankyo - honoraria and research funding; Jazz, MedImmune, Syros - honoraria; Notable Labs board of directors/advisory committee member. JMW: Celgene, Pfizer - board of directors/ advisory committee member; Jazz - consultant, speakers bureau member; Takeda - researc funding. EMS: Agios - consultant; Agios, Astellas, Bioline, Celgene, Daiichi Sankyo Genentech, Novartis, PTC Therapeutics, Syros - board of directors/advisory committee member. SdB: AbbVie, Agios, Astellas, Bayer, Celgene, Daiichi Sankyo, Forma, Janssen Novartis, Pfizer, Pierre Fabre, Servier, Syros - consultant; Celgene - speakers bureau member; Agios, Forma - research funding. ATF: AbbVie, Agios, Amphivena, Astellas, Celgene Daiichi Sankyo, Forty Seven, Jazz, Kite, NewLink Genetics, Novartis, PTC Therapeutics Takeda, Troyagene - consultant: Amphivena, Jazz, Kite, Newl ink Genetics - honoraria. GTP: no conflict of interest to disclose. ASS: Amgen, Celgene, Stemline - speakers bureau member; Amgen - consultant. RMS: AbbVie, Actinium, Agios, Amgen, Argenx, Arog, Astellas AstraZeneca, Biolinerx, Celgene, Cornerstone Biopharma, Fujifilm, Jazz, Merck, Novartis, Ono, Orsenix, Otsuka, Pfizer, Sumitomo, Trovagene - consultant; Argenx, Celgene, Takeda Oncology - data and safety monitoring board member; Agios, Arog, Novartis research funding. PAP: Celgene - board of directors/advisory committee member, speakers bureau member; Dava Oncology, France Foundation - honoraria. MST: AbbVie, BioLineRx, Dajichi Sankvo, Delta Fly, Jazz, KAHR, Nohla, Oncolvze, Orsenix, Rigel, Tetraphase consultant, board of directors/advisory committee member; AbbVie, ADC Therapeutics. Biosight, Cellerant, Orsenix - research funding; UpToDate - patents/royalties. HW, VZ, BF KEY, AO, SR, HL, BW, and TW; Agios - employment and stockholder, HMK; Ariad, Aster BMS, Cyclacel, Daiichi Sankyo, Immunogen, Jazz, Novartis, Pfizer - research funding; Actinium, Immunogen, Pfizer, Takeda - honoraria

Editorial assistance was provided by Helen Varley, PhD, CMPP, Excel Medical Affairs, Horsham, UK, and supported by Agios.

References

- 1. DiNardo CD et al. Leukemia 2016;30:980-4
- 2. Medeiros BC et al. Leukemia 2017;31:272-81 3 Dang Let al Nature 2009:462:739-44
- 4. Lu C et al. Nature 2012;483:474-8.
- 5. Saha SK et al. Nature 2014;513:110-4
- 6 Xu W et al. Cancer Cell 2011:19:17-30
- 7. Popovici-Muller J et al. ACS Med Chem Lett 2018;9:300-5.
- 8. DiNardo CD et al. N Engl J Med 2018;378:2386-98.
- 9. DiNardo CD et al. Clin Lymphoma Myeloma Leuk 2019:19 (Suppl 1):S340.

