Molecular characterization of clinical response and relapse in patients with *IDH1*-mutant newly diagnosed acute myeloid leukemia treated with ivosidenib and azacitidine

<u>Scott R Daigle</u>, MS¹, Sung Choe, PhD¹, Courtney D DiNardo, MD², Anthony S Stein, MD³, Eytan M Stein, MD⁴, Amir T Fathi, MD⁵, Olga Frankfurt, MD⁶, Andre C Schuh, MD⁷, Hartmut Döhner, MD⁸, Giovanni Martinelli, MD⁹, Prapti A Patel, MD¹⁰, Emmanuel Raffoux, MD¹¹, Peter Tan, MBBS¹², Amer M Zeidan, MD¹³, Stéphane de Botton, MCU-PH¹⁴, Richard M Stone, MD¹⁵, Mark Frattini, MD¹⁶, Aleksandra Franovic, PhD¹⁶, Emily Xu, PhD¹, Thomas Winkler, MD¹, Bin Wu, PhD¹, Paresh Vyas, MRCP, FRCP, FRCPath¹⁷

¹Agios Pharmaceuticals, Inc., Cambridge, MA, United States; ²University of Texas MD Anderson Cancer Center, Houston, TX, United States; ³City of Hope National Medical Center, Duarte, CA, United States; ⁴Memorial Sloan Kettering Cancer Center, New York, NY, United States; ⁵Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; ⁶Northwestern University, Chicago, IL, United States; ⁷Princess Margaret Cancer Centre, Toronto, Canada; ⁸Ulm University Hospital, Ulm, Germany; ⁹Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy; ¹⁰University of Texas Southwestern Medical Center, Dallas, TX, United States; ¹¹Hôpital Saint-Louis, Paris, France; ¹²Royal Perth Hospital, Perth, WA, Australia; ¹³Yale Cancer Center, New Haven, CT, United States; ¹⁴Institut Gustave Roussy, Villejuif, France; ¹⁵Dana-Farber Cancer Institute, Boston, MA, United States; ¹⁶Bristol-Myers Squibb, New York, NY, United States; ¹⁷University of Oxford, Oxford, United Kingdom

This study was funded by Agios Pharmaceuticals, Inc.

Background

- Somatic mutations in *IDH1* occur in 6–10% of patients with AML, resulting in the production of the oncometabolite 2-HG^{1–5}
- Ivosidenib, a mIDH1 inhibitor, is approved in the United States for mIDH1 relapsed/refractory AML, and newly diagnosed mIDH1 AML in patients ≥ 75 years old or with comorbidities precluding intensive induction chemotherapy
- Deep and durable remissions in mIDH1 newly diagnosed AML patients treated with ivosidenib and azacitidine were observed in a phase 1b study (NCT02677922)⁶
 - ORR 78.3% (18/23), CR 60.9% (14/23), and CR + CRh 69.6% (16/23)
 - Median duration of response in months, not estimable (95% CI, [10.3, NE])
 - 82% 12-month overall survival rate (95% CI, [58.8–92.8])

2-HG = 2-hydroxyglutarate; AML = acute myeloid leukemia; CI = confidence interval; CR = complete remission; CRh = CR with partial hematologic recovery; *IDH1* = isocitrate dehydrogenase 1; m/DH1 = mutant *IDH1*; NE = not estimable; ORR = overall response rate.
1. Mardis ER et al. *N Engl J Med* 2009;361:1058–66. 2. Ward PS et al. *Cancer Cell* 2010;17:225–34. 3. Patel KP et al. *Am J Clin Pathol* 2011;135:35–45. 4. DiNardo CD et al. *Am J*

Hematol 2015;90:732–6. 5. Dang L et al. Nature 2009;462:739–44; 6. DiNardo CD et al. J Clin Oncol. 2020. DOI: 10.1200/JCO.20.01632.

Per patient treatment duration, response, and *IDH1* mutation clearance (N = 23)

*m/DH1 clearance assessed by BEAMing digital PCR (detection limit 0.02–0.04%); ^aPatient continued on commercially available ivosidenib; ^bPatient had m/DH1 clearance in PBMCs only (BMMCs not available); all other patients had m/DH1 clearance in both BMMCs and PBMCs; ^cOnly deaths occurring within 60 days of last dose were included.

BMMCs = bone marrow mononuclear cells; CR = complete remission; CRh = CR with partial hematologic recovery; CRi = CR with incomplete hematologic recovery; CRp = CR with incomplete platelet recovery; HSCT = hematopoietic stem cell transplant; MLFS = morphological leukemia-free state; NA = not assessed; PBMCs = peripheral blood mononuclear cells; PCR = polymerase chain reaction; PR = partial remission; SD = stable disease.

Objectives and methods

Objective

 Molecular characterization of clonal evolution and relapse in patients with mIDH1 newly diagnosed AML treated with ivosidenib + azacitidine (IVO + AZA)

Analysis data set and methods

^a1400 gene ACE Extended Cancer Panel, Personalis Inc; ^bIncluding the latest time point available as of 01March2020; ^cMission Bio AML panel V2. ACE = Accuracy and Content Enhanced; AML = acute myeloid leukemia; BMMC = bone marrow mononuclear cells; CR = complete remission; CRh = CR with partial hematologic recovery; DNAseg = deoxyribonucleic acid sequencing; *IDH1* = isocitrate dehydrogenase 1; PBMC = peripheral blood mononuclear cell; PD = progressive disease.

Frequency of emerging mutations by pathway in patients with bulk DNAseq data at baseline and on study

Pathway/Gene	Patients with emerging mutations during IVO + AZA therapy (n = 22)	Patients with emerging mutations at relapse/progression (n = 5)
IDH1/IDH2	3	2
IDH1 2 nd site mutation	0	0
IDH2	3	2
RTK Pathway ^a	0	0
Differentiation ^b	4	1
Chromatin/epigenetic ^c	3	2
JAK/STAT ^d	1	0
Other ^e	1	1

^a*RTK* pathway genes examined include *FLT3*, *KRAS*, *NRAS*, and *PTPN11* ^bDifferentiation pathway genes include *CIC*, *CUX1*, *SETBP1*, and *RUNX1* ^cChromatin/epigenetic pathway genes include *DNM3TA*, *KMT2D*, *TET2*, and *WT1* ^dJAK/STAT pathway gene is *JAK2* ^eOther pathway gene is *SMC1A*

- Overall *IDH1* 2nd site and *RTK* pathway mutations occurred less frequently when compared with R/R AML patients treated with monotherapy IVO¹
- Within the relapse/progression cases, emerging mutations were observed in 4/5 patients:
 - Patient 1: IDH2, SMC1A
 - Patient 2: CUX1, IDH2, SETBP1
 - Patient 3: DNMT3A, TET2
 - Patient 4: WT-1

AML = acute myeloid leukemia; AZA = azacitidine; DNAseq = deoxyribonucleic acid sequencing; *IDH1* = isocitrate dehydrogenase 1; *IDH2* = isocitrate dehydrogenase 2; IVO = ivosidenib; JAK = Janus kinase; R/R = relapsed/refractory; *RTK* = receptor tyrosine kinase; STAT = signal transducer and activator of transcription proteins. 1. Choe et al. *Blood Adv* 2020;4:1894–1905.

Single-cell DNAseq relapse case 1: 76 y, M, *de novo* AML, normal karyotype

Clonal structure single-cell:

- Baseline *IDH1* clone cleared with IVO + AZA treatment
- At relapse a minor *IDH2* clone present at baseline expands independently of the *IDH1* clone with a concurrent rise in 2-HG

Subclones with > 1% of total cells in at least one time point shown; LLOQ < 30 ng/mL.

2-HG = 2-hydroxyglutarate; AML, acute myeloid leukemia; AZA = azacitidine; C = cycle; CR = complete remission; D = day; EOT = end of treatment; IDH1 = isocitrate

dehydrogenase 1; IDH2 = isocitrate dehydrogenase 2; IVO = ivosidenib; LLOQ = lower limit of quantitation; M = male; y = year; WT = wild type.

Single-cell DNAseq relapse case 2: 68 y, M, *de novo* AML with del 12p

- Polyclonal disease with the *IDH1* containing clone cleared with IVO + AZA therapy
- A baseline *PTPN11* clone evolved to gain multiple pathway mutations, including an *IDH2* mutation with concurrent rise in 2-HG at relapse

Subclones with > 1% of total cells in at least one time point shown; LLOQ < 30 ng/mL.

2-HG = 2-hydroxyglutarate; AML, acute myeloid leukemia; AZA = azacitidine; C = cycle; CR = complete remission; D = day; EOT = end of treatment; *IDH1* = isocitrate

dehydrogenase 1; IDH2 = isocitrate dehydrogenase 2; IVO = ivosidenib; LLOQ = lower limit of quantitation; M = male; WT = wild type.

Single-cell DNAseq relapse case 3: 76 y, F, secondary AML

- Polyclonal disease with the *IDH1* containing clone cleared with IVO + AZA therapy
- Selection and expansion of a baseline *TP53^{Hom}* clone was observed at relapse and most likely cause of resistance

Subclones with > 1% of total cells in at least one time point shown; LLOQ < 30 ng/mL.

2-HG = 2-hydroxyglutarate; AML = acute myeloid leukemia; AZA = azacitidine; C = cycle; D = day; EOT = end of treatment; F = female; Het = heterozygous; Hom = homozygous; IDH1 = isocitrate dehydrogenase 1; IVO = ivosidenib; LLOQ = lower limit of quantitation; MLFS = morphological leukemia-free state; ND = not determined; y = year; WT = wild type.

Summary

- IVO + AZA treatment leads to a high rate of durable molecular remissions in intensive chemotherapyineligible patients with newly diagnosed AML¹
- 5/18 responding patients (CR/CRh/MLFS) relapsed or progressed, with the predominant mutation at relapse/progression involving IDH2 (n = 2), TP53 (n = 2), and TET2 (n = 1)
 - In comparison to R/R AML pts treated with IVO monotherapy, no emerging *IDH1* 2nd site or *RTK* pathway mutations were observed (Bulk DNAseq)
 - Single-cell DNAseq demonstrated multiple mechanisms leading to relapse, with each mechanism evolving separate from the *IDH1* clone
- These results underline the importance of mutational testing, particularly at progression, to determine optimal salvage therapy
- See Poster #2900, Choe et al., for longitudinal molecular profiling of newly diagnosed AML patients treated with monotherapy IVO, and Poster #2814, Montesinos et al., for an update on the phase 3 AGILE study

1. DiNardo CD et al. *J Clin Oncol*. 2020. DOI: 10.1200/JCO.20.01632. AML = acute myeloid leukemia; AZA = azacitidine; CR = complete remission; CRh = CR with partial hematologic recovery; DNAseq = deoxyribonucleic acid sequencing; *IDH1* = isocitrate dehydrogenase 1; *IDH2* = isocitrate dehydrogenase 2; IVO = ivosidenib; MLFS = morphological leukemia-free state.

Acknowledgments and disclosures

We would like to thank the patients taking part in this study

Scott R Daigle – Agios – employee and stockholder; Sung Choe – Agios – employee and stockholder; Courtney D DiNardo – AbbVie, Agios, Celgene – honoraria, consultant/advisor, and research funding; Novartis - consultant; Daiichi Sankyo - honoraria and research funding; Takeda - honoraria; ImmuneOnc, Jazz, MedImmune, Syros honoraria; Notable Labs - board of directors/ advisory committee member; Calithera - research funding; Anthony S Stein - Amgen, Celgene, Stemline - speakers bureau member; Amgen – consultant; Evtan M Stein – Agios, Astellas, Amgen, Abbvie, Biotheryx, Seattle Genetics, Genentech, Novartis – consultant; Agios, Astellas, Bioline, Celgene, Daiichi Sankyo, Genentech, Novartis, PTC Therapeutics, Syros, Genentech - board of directors/advisory committee member; Daiichi Sankyo, Celgene - research funding and honoraria; Syndax – consultant and research funding; Bayer, Novartis – research funding; Auron Therapeutics – current equity folder in private company; Amir T Fathi – AbbVie, Agios, Amgen, Amphivena, Astellas, BMS, Blue Print Oncology, Boston Biomedical, Celgene, Daiichi Sankyo, Forty Seven, Jazz, Kite, Kura, NewLink Genetics, Novartis, Pfizer PTC Therapeutics, Seattle Genetics, Takeda, Trillium, TrovaGene – consultant; Amphivena, Jazz, Kite, NewLink Genetics – honoraria; Agios, Celgene, BMS, Seattle Genetics – research funding; Olga Frankfurt - no conflict of interest to disclose; Andre C Schuh - Agios, Novartis, Abbvie, Amgen, Celgene, Jazz, Pfizer. Teva Canada Innovation honoraria; Novartis – research funding; Abbvie, Amgen, Celgene, Jazz, Pfizer. Teva Canada Innovation – board membership of advisory committee; Hartmut Döhner – AbbVie, Agios, Amgen, Astellas, Astex, Celgene, Janssen, Jazz, Novartis, Roche, Seattle Genetics - consultant; Amgen, Arog, Bristol-Myers Squibb, Celgene, Jazz, Novartis, Pfizer research funding; AbbVie, Agios, Amgen, Astellas, Astex, Celgene, Janssen, Jazz, Novartis, Roche, Seattle Genetics - honoraria; Sunesis - other; Giovanni Martinelli - AbbVie, Amgen, Celgene, Daichii Sankyo, Janssen, Jazz, Incyte, Pfizer, Roche - consultant; Celgene, Novartis, Pfizer - speakers bureau member; Abbvie, Daichii Sankyo, Pfizer research funding; Prapti A Patel – Celgene, Agios – consultant/advisor; Celgene – speakers bureau member; DAVA Pharmaceuticals, France Foundation – honoraria; Emmanuel Raffoux - no conflict of interest; Peter Tan - Agios, Janssen, NOHLA Therapeutics, Novartis - research funding; Novartis - travel expenses; AbbVie - investigator on an AbbVie funded clinical trial; Amer M Zeidan - Acceleron, AbbVie, ADC Therapeutics, Aprea, Astex, Boehringer Ingelheim, BMS, Celgene, Incyte, Medimmune/AstraZeneca, Otsuka, Pfizer, Takeda, Trovagene – research funding; AbbVie, Acceleron, Agios, Ariad, Astellas, BeyondSpring, BMS, Boehringer Ingelheim, Cardinal Health, Celgene, Daiichi Sankyo, Epizyme, Ionis, Incyte, Novartis, Otsuka, Pfizer, Seattle Genetics, Jazz, Takeda, Taiho, Cardiff Oncology, Trovagene - consultant and honoraria; Novartis - travel support and research funding; Cardiff Oncology, Leukemia and Lymphoma Society, CCITLA - other; Stéphane de Botton - AbbVie, Agios, Astellas, Bayer, Celgene, Daiichi Sankyo, Forma, Janssen, Novartis, Pfizer, Pierre Fabre, Servier, Syros - consultant; Agios, Forma - honoraria and research funding; Celgene - speakers bureau member and honoraria; Astellas, Daiichi Sankyo, Syros, AbbVie, Bayer, Seattle Genetics, Janssen – honoraria; Richard M Stone – AbbVie, Actinium, Agios, Amgen, Argenx, Arog, Astellas, AstraZeneca, Biolinerx, Celgene, Cornerstone Biopharma, Daiichi-Sankyo, Elevate, Fujifilm, Gemoab, Janssen, Macrogenics, Hoffman LaRoche, Stemline, Syndax, Syntrix, Syros, Jazz, Merck, Novartis, Ono, Orsenix, Otsuka, Pfizer, Sumitomo, Trovagene, Takeda - consultant; Argenx, Celgene, Takeda Oncology - data and safety monitoring board/ committee member; Astellas – board of directors or advisory committee; Abbvie, Agios, Arog, Novartis – research funding; Mark Frattini – BMS employment and equity ownership; Aleksandra Franovic – BMS employment and equity ownership; Thomas Winkler – Agios – employee and stockholder; Bin Wu – Agios – employee and stockholder; Emily Xu – Agios – employee and stockholder; **Paresh Vyas** – Celgene, Forty Seven, Novartis – research funding; AbbVie, Astellas, Celgene, Daiichi Sankyo, Novartis. Pfizer – speakers bureau member

Editorial assistance was provided by Chloe Malloy, MSc, Onyx Medica, London, UK, and supported by Agios Pharmaceuticals, Inc.