Ivosidenib improves overall survival relative to standard therapies in relapsed or refractory mutant *IDH1* AML: Results from matched comparisons to historical controls

Peter Paschka¹, Hervé Dombret², Xavier Thomas³, Christian Recher⁴, Sylvain Chantepie⁵, Pau Montesinos^{6,7}, Evelyn Acuña-Cruz⁷, Paresh Vyas⁸, Karl-Anton Kreuzer⁹, Michael Heuser¹⁰, Klaus H Metzeler¹¹, Michael Dennis¹², Bruno Quesnel¹³, Mathilde Hunault-Berger¹⁴, Mohamad Mohty¹⁵, Arnaud Pigneux¹⁶, Stéphane de Botton¹⁷, Daniela Weber¹, Konstanze Döhner¹, Gary Milkovich¹⁸, John Reitan¹⁸, Sarah C MacDonald¹⁹, Deborah Casso²⁰, Michael Storm²¹, Hua Liu²¹, Stephanie M Kapsalis²¹, Eyal C Attar²¹, Thomas Winkler²¹, Hartmut Döhner¹

¹Universitätsklinikum Ulm, Ulm, Germany; ²Hôpitalier Universitaire de Caen, Caen, France; ³Centre Hospitalier Lyon-Sud, Pierre-Benite, France; ⁴IUCT-Oncopole, Centre Hospitalier Lyon-Sud, Pierre-Benite, France; ⁴IUCT-Oncopole, Centre Hospitalier Universitaire de Toulouse, France; ⁵Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Toulouse, France; ⁵Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Toulouse, France; ⁵Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Toulouse, France; ⁶CIBERONC, Instituto Carlos III, Madrid, Spain; ⁷Hospital Universitaire de Toulouse, France; ⁶CIBERONC, Instituto Carlos III, Madrid, Spain; ⁸Universitaire de Toulouse, France; ⁶CIBERONC, Instituto Carlos III, Madrid, Spain; ⁸Universitaire de Toulouse, France; ⁶CIBERONC, Instituto Carlos III, Madrid, Spain; ⁸Universitaire de Toulouse, France; ⁶CIBERONC, Instituto Carlos III, Madrid, Spain; ⁸Universitaire de Toulouse, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁹Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, ⁹Uniklinik Köln, Köln, Köln, Germany; ¹⁰Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; ¹¹Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany; ¹²The Christie NHS Foundation Trust, Manchester, United Kingdom; ¹³Centre Hospitalier Régional Universitaire de Lille, Lille, France; ¹⁴CRCINA Centre Hospitalier Universitaire d'Angers, France; ¹⁵Sorbonne University, Hôpital Saint-Antoine, Paris, France; ¹⁶CHU Bordeaux, Université de Bordeaux, Bordeaux, France; ¹⁷Institut Gustave Roussy, Villejuif, France; ¹⁸RJM Group, LLC, Washington, DC, USA; ¹⁹IQVIA, Vancouver, Canada ²⁰IQVIA, Seattle, WA, USA; ²¹Agios Pharmaceuticals, Inc., Cambridge, MA, USA

BACKGROUND

Ivosidenib (IVO) monotherapy was approved by the US FDA for the treatment of acute myeloid leukemia (AML) with a susceptible *IDH1* mutation as detected by an FDAapproved test in adults with newly diagnosed AML who are \geq 75 years of age or who have comorbidities that preclude the use of intensive induction chemotherapy and in adults with relapsed or refractory (R/R) AML, based on the results of the open-label AG120-C-001 (ClinicalTrials.gov NCT02074839) study

OBJECTIVES

To evaluate the comparative benefit of IVO, matched patient analyses were conducted using data on mIDH1 R/R AML patients from the AML Study Group (AMLSG) database (NCT01252485) and a real-world chart review study (RWD) from France, Germany, the UK, and Spain

METHODS

IVO trial patients (N = 159)

- Patients enrolled in Arm 1+ of Study AG120-C-001 (phase 1, multicenter, open-label trial) with an IDH1 mutation, R/R AML, whose starting dose was 500 mg once daily, and met all of the following key eligibility criteria:
- Patients who relapsed after transplantation
- Patients in second or later relapse
- Patients who were refractory to initial induction or reinduction treatment, or
- Patients who relapsed within 1 year of initial treatment, excluding patients with favorable-risk status

Historical controls: AMLSG patients (N = 127)

 Adult R/R AML patients with documented IDH1 mutations for whom data were collected as part of an AMLSG study or clinical registry

Historical controls: RWD patients (N = 148)

 A retrospective, multi-center, chart-review study of adult patients with R/R AML who had a mutation in *IDH1*, were treated with at least one anti-leukemic agent for R/R AML, and did not receive prior treatment with an mIDH1 inhibitor

Statistical analysis

- Baseline was defined as the date of first dose of IVO, date of first dose of the most recent AML therapy received, and date of most recent documented relapsed or refractory AML for the AG120-C-001 study, RWD, and AMLSG, respectively
- Four propensity score–based matching/weighting methods were used
- A literature review and data availability led to the inclusion of 8 baseline prognostic factors for estimation of propensity score: prior hematopoietic stem cell transplantation (HSCT), age, number of prior regimens for AML, nature of AML cytogenetic risk, primary refractory status, relapse-free survival (RFS) after the first induction chemotherapy, and prior induction chemotherapy. Eastern Cooperative Oncology Group (ECOG) performance status was also included in sensitivity analyses
- Balance between populations was assessed pre- and post-match via comparison of (weighted) standardized differences for each covariate
- Time-to-event data were summarized via Kaplan-Meier estimators with 95% CIs
- Cox regression analysis, using the key prognostic factors as covariates, was applied to estimate hazard ratios (HRs) of overall survival (OS), and the corresponding 95% CI was estimated using the sandwich estimator

Analysis sets

- All Arm 1+ patients from the AG120-C-001 study were compared to the entirety of the combined historical control dataset in the base case
- Additional analyses were conducted comparing IVO patients who were, by eligibility criteria, not candidates for intensive salvage therapies (IC), to the subset of RWD patients who received non-intensive salvage therapies (non-IC) as their last therapy

Table 1. Baseline disease characteristics and standardized differences between IVO and HC cohorts before and after matching

Prognostic factor

Prior HSCT, n (

Age, mean (SD Number of prior regimens⁵, n (% < 2

≥2

Nature of AML

De novo

Secondary Cytogenetic risk n (%)

Intermediate Poor

Primary refracto RFS after the fi induction chemo mean (SD) Prior induction chemotherapy,

RESULTS: Ivosidenib vs non-IC RWD

Prognostic factor

Prior HSCT, n (

Age, mean (SD Number of prior < 2 ≥2 Nature of AML De novo Secondary Cytogenetic risk Intermediate Poor Primary refracto RFS after the fi chemotherapy^c

Prior induction

RESULTS: Ivosidenib vs all historical controls (AMLSG + RWD)

Baseline characteristics

· Standardized differences were reduced in all of the matching/weighting methods compared to the cohort prior to matching (Table 1)

	Prior to match population characteristics		[Weighted] ^a standardized differences				
			Prior to match	Optimal full matched sample	Optimal 1:1 matched sample	Greedy nearest neighbor matched sample	IPTW weighted sample
	IVO (n = 159)	HC (n = 275)	(n = 159 IVO and 275 HC)	(n = 152 IVO and 225 HC)	(n = 157 IVO and 157 HC)	(n = 117 IVO and 117 HC)	(n = 157 IVO and 238 HC)
%)	43 (27.0)	49 (17.8)	0.223	-0.069	0.058	-0.059	0.052
)	64.3 (13.51)	57.5 (13.59)	0.501	0.024	0.228	0.012	-0.007
r 6)							
	73 (45.9)	167 (60.7)	-0.300	0.061	0.013	0.000	-0.015
	86 (54.1)	108 (39.3)	0.300	-0.061	-0.013	0.000	0.015
n (%)							
	110 (69.2)	229 (83.3)	-0.336	-0.083	-0.220	0.040	0.048
	49 (30.8)	45 (16.4)	0.345	0.083	0.220	-0.040	-0.048
k status,							
	103 (64.8)	208 (75.6)	-0.239	0.021	-0.137	-0.092	0.029
	56 (35.2)	52 (18.9)	0.373	-0.021	0.137	0.092	-0.029
ory, n (%)	64 (40.3)	88 (32.0)	0.172	0.028	0.092	0.089	0.054
rst otherapy ^c ,	5.9 (12.19)	7.9 (19.69)	-0.121	0.051	-0.086	-0.071	-0.036
n (%)	118 (74.2)	258 (93.8)	-0.555	-0.065	-0.393	-0.025	0.052

^aWeighted standardized differences are presented for optimal full matching and IPTW methods

^bNumber of prior regimens is determined by medical review

^cRFS from the first induction chemotherapy is defined as time from the date of first CR/CRi/CRp/MLFS from the first induction chemotherapy to the date of first relapse

HC = historical control; IPTW = inverse probability of treatment weighting

Table 3. Baseline disease characteristics and standardized differences between IVO and the non-IC RWD cohort before and after matching

		[Weighted] ^a standardized differences				
	Prior to match population characteristics	Optimal full matched sample	Optimal 1:1 matched sample	Greedy nearest neighbor matched sample	IPTW weighted sample	
	RWD (n = 65)	(n = 155 IVO and 64 RWD)	(n = 65 IVO and 65 RWD)	(n = 59 IVO and 59 RWD)	(n = 157 IVO and 65 RWD)	
%)	12 (18.5)	0.015	0.114	0.043	0.046	
))	65.6 (13.1)	0.026	0.030	0.081	0.023	
r regimens ^ь , n (%)	34 (52.3) 31 (47.7)	0.039 0.039	0.062 0.062	0.034 0.034	0.036 0.036	
n (%)	45 (69.2) 20 (30.8)	0.176 0.176	0.098 0.098	0.000	0.053 0.053	
k status, n (%)	42 (64.6) 23 (35.4)	0.186 0.186	0.000 0.000	0.072 0.072	0.032 0.032	
ory, n (%)	18 (27.7)	0.066	0.000	0.108	0.012	
rst induction , mean (SD)	10.1 (23.4)	0.088	0.139	0.022	0.006	
chemotherapy, n (%)	51 (78.5)	0.045	0.038	0.129	0.003	

Overall survival

- with adverse prognostic factors (Table 1)
- Figure 1)

Table 2. Median overall survival by matching method

Analysis cohorts

Prior to match

Optimal full matched sample Optimal 1:1 matched sample

Greedy nearest neighbor matched

IPTW weighted sample

Figure 1. Forest plot of HRs with different propensity score matching/weighting methods

	Unadjuste
Unmatched	Adjusted by Key
	Adjusted by Key + ECOC
	Unstratified, Key
Optimal full	Stratified, Ke
matching	Unstratified, Key + ECOC
,	Stratified, Key + ECOC
	Unstratified, Ke
Optimal 1·1	Stratified, Ke
matching	Unstratified, Key + ECOC
	Stratified, Key + ECOC
Greedy	Unstratified, Ke
nearest	Stratified, Ke
neighbor 1:1	Unstratified, Key + ECOC
matching	Stratified, Key + ECOC
	Unstratified, Key
IPTW	Unstratified, Key + ECOC

Key prognostic factors are: history of HSCT, age, number of prior regiments for AML, nature of AML, cytogenetic risk, primary refractory status, RFS after the first induction chemotherapy, and prior induction chemotherapy

line of therapy

Baseline characteristics

(Table 3)

Complete remission

[95% CI 1.23, 8.91])

Overall survival

^aWeighted standardized differences are presented for optimal full matching and IPTW methods ^bNumber of prior regimens is determined by medical review °RFS from the first induction chemotherapy is defined as time from the date of first CR/CRi/CRp/MLFS from the first induction chemotherapy to the date of first relapse

Presented at the Virtual Edition of the 25th European Hematology Association (EHA) Annual Congress, June 11–14, 2020

• Before matching/weighting, IVO patients had numerically longer OS than historical controls (median, 8.8 vs 5.4 months; **Table 2**), despite a higher proportion of patients

• In matched/weighted analyses, IVO patients had longer survival than historical controls, with HRs ranging from 0.43–0.73 and non-overlapping 95% CIs (**Table 2**,

	Median OS, months (95% CI)				
	IVO	Historical control			
	8.8 (6.8, 10.2)	5.4 (4.4, 6.7)			
	8.9 (6.7, 10.2)	4.1 (2.6, 6.1)			
	8.8 (6.8, 10.2)	4.5 (3.6, 6.1)			
d sample	9.0 (6.7, 10.4)	3.6 (2.7, 4.8)			
	9.3 (8.1, 12.5)	4.4 (3.4, 5.3)			

• As all patients in Arm 1+ of the AG120-C-001 study were, by eligibility criteria, not considered candidates for intensive treatment, a more relevant comparison was vs historical control patients who did not receive intensive therapies as their most recent

• All matching and weighting methods were assessed and the IPTW method was selected, as it provided the best fit based on weighted standardized differences

• IVO was associated with an increased likelihood of complete remission (CR) compared to non-IC RWD patients (21.7% vs 7.7%; unadjusted odds ratio [OR] 3.32

• When compared to non-IC RWD patients, IVO patients had prolonged survival in both the unmatched analysis (median 8.8 vs 3.8 months; unadjusted HR 0.55 [95% CI 0.39, 0.76]) and matched analyses (HRs 0.26–0.57; Figures 2–3)

RESULTS: Ivosidenib vs non-IC RWD (CONTINUED)

Figure 2. Kaplan-Meier curve of OS in IVO patients vs non-IC RWD patients after applying IPTW adjustment 10 —— IVO - RWD + Censored 0.9 0.8 0.7 0.6 0.5 0.4 *δ* 0.3 0.2 IVO 170 119 21 24 27 12 15 18 Overall survival (months

Figure 3. Forest plot of HRs with different propensity score matching/weighting methods in the non-IC cohort

CONCLUSION

- IVO monotherapy prolonged survival in patients with mIHD1 R/R AML when compared to historical control patients treated with standard therapies in this analysis
- The survival benefit was more pronounced when compared to patients treated with non-intensive therapies

Disclosures

Agios Pharmaceuticals, Inc. provided funding for this study.