Results from Phase 1 Multiple Ascending Dose Study of Mitapivat (AG-348) in Subjects with Sickle Cell Disease

NCT04000165; Investigator-initiated trial; Principal Investigator: Swee Lay Thein

Julia Z. Xu¹, Anna Conrey¹, Ingrid Frey¹, Eveline Gwaabe¹, Laurel A. Menapace¹, Laxminath Tumburu¹, Maureen Lundt¹, Quan Li², Kristen Glass², Varsha Iyer³, Heidi Mangus³, Charles Kung³, Lenny Dang³, Penelope A. Kosinski³, Peter Hawkins³, Neal Jeffries⁴, William A. Eaton², and Swee Lay Thein¹

¹Sickle Cell Branch, National Heart, Lung, and Blood Institute, ²Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, United States; ³Agios Pharmaceuticals, Inc., Cambridge, MA, United States, ⁴Office of Biostatistics Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States

Abstract #10

63rd American Society of Hematology Annual Meeting

December 11, 2021

Pyruvate Kinase R (PKR) Activation in Sickle Cell Disease (SCD)

Key Factors in RBC Sickling			Mitapivat (AG-348) activates PKR → decreases 2,3 DPG and increases ATP in SCD ^{1,2}		
2,3-DPG	Increased in SCD	 Stabilizes HbS in polymerizing T form Decreases hemoglobin (Hb) oxygen affinity Promotes sickling 	Glucose Inhibit HbS polymerization 1,3-DPG 3-PG PEP		
ΑΤΡ	Decreased in SCD	 Essential for water and ion homeostasis Reduced ATP leads to water and ion loss RBC dehydration promotes sickling 	Improves RBC membrane integrity Pyruvate		

ATP, adenosine triphosphate; DPG, diphosphoglycerate; Hb, hemoglobin; PKR, red-cell pyruvate kinase; RBC, red blood cell; SCD, sickle cell disease.

¹ Rab et al. Blood. 2021 May 27; 137(21): 2997–3001; ² Xu et al. Abstract, ASH 2020.

Study Design of Mitapivat Dose Escalation Study in SCD

- Nonrandomized, open-label, Phase 1 study; N =17
- Adults (age \geq 18 years) with stable Hb SS disease eligible
- No transfusions or changes in hydroxyurea/L-glutamine within 90 days

Primary endpoints:

- Safety and tolerability
- Changes in Hb and hemolytic markers

Secondary endpoints:

- Pharmacokinetics
- 2,3-DPG and ATP levels
- p50 (O₂ affinity) and t50 (HbS polymerization)

Sample Collection

Timepoints presented in analysis of laboratory endpoints

*100 mg dose level added to protocol with amendment #6.

ATP, adenosine triphosphate; BID, twice daily; DPG, diphosphoglycerate; Hb, hemoglobin.

Demographics, Disease Characteristics, and Disposition

Baseline Characteristics at Enrollment	N=17
Age, mean (range), years	39 (23-55)
Male, N (%)	11 (64.7)
African or African-American, N (%)	17 (100)
Hydroxyurea use, N (%)	12 (70.6)
L-glutamine use, N (%)	1 (5.9)
Baseline Laboratory Measures	N=16*
Hemoglobin, mean (SD), g/dL	9.2 (1.1)
Abs reticulocyte count, mean (SD), K/µL	188.2 (99.2)
Total bilirubin, mean (SD), mg/dL	2.0 (0.9)
Lactate dehydrogenase, mean (SD), U/L	375.2 (120.6)
Hemoglobin F % by HPLC, mean (SD), %	19.0 (9.8)

* #4 withdrawn due to need for medical interventions for an AE unrelated to drug and lost to follow-up; not evaluable for laboratory response.

** #10 self-discontinued therapy prior to completing 100 mg dose level due to an AE unrelated to drug; analyzed with 50 mg dose cohort.

AE, adverse event; Abs, absolute; HPLC, high-performance liquid chromatography; SD, standard deviation.

Mitapivat is Safe and Tolerable for SCD Patients

Treatment Related	N=17 (%)			
Adverse Events (AEs)*	All Grades (≥ 10%)	Grade ≥ 3		
All	8 (47.1%)	3 (17.6%)		
Insomnia	6 (35.3%)	0 (0%)		
Arthralgia	3 (17.6%)	0 (0%)		
Hypertension	3 (17.6%)	1 (5.9%)		
Vaso-occlusive crisis (VOC)	2 (11.8%)	2 (11.8%)		
Headache	2 (11.8%)	0 (0%)		
Heart rate increased	2 (11.8%)	0 (0%)		
Anemia	-	1 (5.9%)		
Fatigue	-	1 (5.9%)		
Serious Adverse Ev	N=17 (%)			
All	6 (35.3%)			
VOC	4 (23.5%)			
Pain (shoulder)	1 (5.9%)			
Pulmonary embolism (PE)**	1 (5.9%)			

Summary of VOCs:

- No VOC during dose escalation
- 2 VOCs during drug taper[†] \rightarrow possibly drug related
- 2 VOCs during 28-day safety follow-up in setting of known VOC triggers → unlikely drug related

Summary of other SAEs or Grade 3 AEs:

- No AEs requiring drug discontinuation
- Grade 3 hypertension in subject with baseline Grade 2 hypertension
- Anemia and fatigue in same patient following drug taper
- * Defined as possibly, probably, or definitely related to study drug.

** Pre-existing PE discovered 4 days after study drug initiation; patient withdrawn (subject #4).

⁺ First VOC on study triggered protocol amendment to extend length of taper.

Mitapivat Improves Anemia in SCD

Linear mixed effects model with age and gender as covariates:

Variable	Value	SE	DF	t-value	p-value
Baseline	8.73	0.51	81	16.95	< 0.0001
5 mg BID	0.34	0.22	81	1.56	0.12
20 mg BID	0.76	0.22	81	3.53	0.0007
50 mg BID	1.19	0.22	81	5.5	< 0.0001
100 mg BID	0.92	0.26	81	3.52	0.0007
End of taper	0.34	0.22	81	1.52	0.13
End of study	0.37	0.22	81	1.7	0.09
Age	-0.02	0.03	13	-0.49	0.63
Male gender	0.68	0.6	13	1.13	0.28

9/16 (56.3%) achieved a Hb response (≥ 1g/dL increase from baseline)

BID, twice daily; DF, degrees of freedom; Hb, hemoglobin; SE, standard error.

Mitapivat Decreases Markers of Hemolysis in SCD

BID, twice daily.

PD Results Suggest Increased O₂ Affinity and Slower Sickling

p50: partial pressure of O_2 at which 50% of hemes in Hb molecule have O_2 bound.

t50: time in minutes at which 50% of RBCs are sickled in response to gradual deoxygenation with nitrogen to final O₂ partial pressure of 38 torr.

* Percent changes in 2,3-DPG and ATP refer to intracellular concentrations, determined from whole blood concentrations divided by the hematocrit.

** Missing data are the result of disruptions related to the COVID-19 pandemic.

ATP, adenosine triphosphate; BID, twice daily; DPG, diphosphoglycerate; Hb, hemoglobin; O₂, oxygen; PD, pharmacodynamic.

- Mitapivat, an oral PKR activator, was safe and well tolerated at multiple ascending dose levels in subjects with SCD.
- Mitapivat reduced 2,3-DPG and increased ATP, with an expected increase in oxygen affinity and decrease in sickling rate, signaling its potential to improve clinically meaningful outcomes in SCD.
- This study provides proof of concept that mitapivat improves anemia and decreases hemolysis in SCD.
- Long-term disease modifying effects of mitapivat treatment in SCD are being evaluated in an ongoing extension study (ClinicalTrials.gov NCT04610866).
- Agios Pharmaceuticals is actively recruiting patients for their phase 2/3 clinical trial RISE UP (NCT05031780), evaluating safety and efficacy of mitapivat in SCD, including both hemoglobin response and frequency of sickle cell pain crises (ASH Abstract 3109).

Acknowledgments

<u>NHLBI</u>

- Swee Lay Thein, MD, DSc
- Anna Conrey, NP
- Eveline Gwaabe, NP
- Ingrid Frey, RN
- Jim Nichols, RN
- Laurel Menapace, MD
- Neal Jeffries, PhD
- Lax Tumburu, PhD
- Maureen Lundt, MS
- Tim Lequang, MS

Agios Pharmaceuticals, Inc.

- Varsha Iyer, PhD
- Heidi Mangus, BS
- Charles Kung, PhD
- Lenny Dang, BA
- Penelope Kosinski, MS
- Peter Hawkins, PhD
- Maggie Grasso, MD
- Thomas Winkler, MD
- Keely Gilroy, PhD
- Sarah Gheuens, MD, PhD, MMSc

<u>NIDDK</u>

- William Eaton, MD, PhD
- Quan Li, PhD
- Kristen Glass, BA
- Emily Dunkelberger, PhD
- Eric Henry, PhD
- Troy Cellmer, PhD